

 Presented at the DLSU Research Congress 2016

De La Salle University, Manila, Philippines
March 7-9, 2016

Gesture-Based 3D Mesh Modeler
Roland Carlos1, Clarence Dalan1, Aaron Sanchez1, Kevin Tolentino1 and Florante R. Salvador1, *

1De La Salle University, Manila
*Corresponding Author: florante.salvador@dlsu.edu.ph

Abstract: This research is concerned with the design and implementation of a 3D
modeling tool that utilizes gesture-based input. The idea is to create a system for
tablet PCs, specifically an Android tablet, that accepts touch input for the creation
and modeling transformation of a 3D mesh model. The current prototype supports
creation, deletion and editing of 3D primitives, i.e., vertices, edges, faces and meshes.
The implementation difficulties encountered and that had to be addressed are due to
computing power, memory space and size of the display screen.

Keywords: Mesh modeling; 3D modeling; sketch-based interface; computer graphics

1. INTRODUCTION

3D modeling is concerned with the

representation, manipulation and storage of a scene
composed of entities which include objects which
have geometric (such as shape) and non-geometric
properties (such as material properties, eg. color and
texture). 3D modeling can be in technologies such as
Computer Aided Design (CAD), and 3D computer
animation software.

The demand for easier interfaces for 3D
modeling has urged the development of various
techniques/interfaces to create an intuitive
environment for 3D modeling. Sketch-based
interfaces or interfaces that accept hand or pen
gestures as a way of input is more intuitive for
creating geometric models (Igarashi, Matsuoka, and
Tanaka, 1999; Yang, Sharon and van de Panne,
2005; Kin, et. al, 2011). This is based on the premise
that drawing is a basic human skill. Humans convey
their ideas visually by sketching or drawing figures.

Our research is concerned with the design
and implementation of a 3D modeling tool that
utilizes gesture-based input. The idea is to create a
system for tablet PCs, specifically an Android tablet
that accepts touch input for the creation and
modeling transformation of a 3D mesh model. A 3D
mesh model is composed of a set of vertices, edges

connecting two vertices, edge loops called faces, and
faces that makes up a mesh.

In this paper we describe a 3D modeling
system that accepts gesture-based input for basic 3D
modeling operations. The system runs on the
Android platform with following functionalities:
creation, deletion and editing of geometric
primitives, modeling transformations (i.e.,
translation, scaling and rotation) and viewing
transformations. It is also able to import existing 3D
models and save created and edited 3D models into a
file.

2. SYSTEM DESCRIPTION

2.1 System Overview

Figure 1 illustrates the flow of a gesture-
based 3D mesh modeler that we developed. It
accepts touch/hand gestures as input and maps them
to a library of predefined gestures to determine the
operation that is being requested.

There are three categories of operations: (1)
geometric operations cover creation, deletion and
modeling transformations, (2) viewing operation
cover viewing transformation to specify how the
mesh model will be viewed from a virtual camera,
and (3) file management which handles the saving of

VCR
Typewritten Text

VCR
Typewritten Text
Proceedings of the DLSU Research Congress Vol 4 2016 ISSN 2449-3309

 Presented at the DLSU Research Congress 2016

De La Salle University, Manila, Philippines
March 7-9, 2016

Fig. 1. Design of a gesture-based 3D mesh modeler

3D models into a file, and loading 3D models from
existing files. The system updates the screen
depending on the gestures and operations to be
performed.

2.2 Some Implementation Details

The system is basically a simple mesh
modeling tool created for the Android platform
specifically for Android tablets. It accepts hand
gestures, mainly by the tip of fingers or pointers, and
interprets these gestures based on the mode of the
system that is active. The system has four separate
modes: create, model, scale, and camera. The actual
user interface of the system can be separated into
two layers; the first layer being the default layer
provided by the Android API (Android Software
Development Kit, 2015) when the activity was
created and the second layer is the layer that was
created using the OpenGL SurfaceView. The second
layer, which is in charge of the actual rendering of
the geometries into the screen, is mainly written
using the OpenGL ES 1.0 API.

Usual applications (such as games) on touch
screen devices are defined on a planar space. These
touch screen gestures map one-to-one with 2D space
representation. The challenge for our application is
how to map gestures on a planar screen that create
and manipulate geometric primitives defined in 3D
space (i.e., with x, y, z coordinates).

We designed and tested different gestures
for user-interaction, and finally decided to adopt a
multi-touch approach as described above. Multi-
touch requires the use of one, two or three fingers
depending on the desired action (Jiao, Deng, and
Wang, 2010).

Fig. 2. Gesture for creating a vertex

Fig. 3. Gesture for translating a model

When the system is in create mode, the only

gestures that can be recognized are the tap, which is
for selection of vertices, and the hold-then-tap
gestures, which are for creation of geometries.
Figure 2 shows the idea on how a vertex is created –
by a single finger tap on the display screen. The
implementation of the actual recognition of these two
gestures does not make use of any library from the
Android API due to the fact that the gesture library
of Android does not return the raw values of the
pointer when the gesture is made.

When the system is in model mode and in
scale mode, it will still accept the single tap for
vertex selection along with other gestures which
include two fingers for translation, three fingers for
rotation, and a combination of a finger on the alt
region with the previously mentioned gestures for
modeling transformations about the z axis since the
normal gestures for translation and rotation are
limited to the x and y axes. Figure 3 shows how a
model is translated by moving two fingers along a
specified direction, and Fig. 4 shows how a model is
rotated using three fingers.

For scaling, the gesture designated is the
pinching action done with two fingers, see Fig. 5.
However, there is a need to be in scale mode to be
able to perform actual scaling. To be able to perform
these modeling transformations, the system stores
all the vertices that have been created, and it then
manually performs the matrix multiplications to the

VCR
Typewritten Text
Proceedings of the DLSU Research Congress Vol 4 2016 ISSN 2449-3309

 Presented at the DLSU Research Congress 2016

De La Salle University, Manila, Philippines
March 7-9, 2016

Fig. 4. Gesture for rotating a model

Fig. 5. Gesture for scaling a model

vertices, and renders all the vertices into the
viewport using OpenGL ES.

When the system is in camera mode, the
user can change the view on the mesh into seven
different views: default front view, back view, top
view, bottom view, left view, right view, and
isometric view. The user may freely change from the
different views by simply tapping the screen. This
mode only accepts the tap gesture for switching
views. In the implementation of the actual changing
of views, the matrices that are needed for the
changing of the position of the eye are already
predefined and are just fed into the predefined
OpenGL utility function gluLookAt().

The other functionalities of the system that
are not covered by the modes are deletion, load, and
save. There are two types of deletion: delete vertex
and delete edge. For delete vertex, the system does
not truly remove the vertex but rather, flags that
vertex as deleted and does not redraw it on the
screen. For delete edge, however, there is a need to
manipulate the actual data structure. First, the
system checks whether the two vertices are actually
on an edge. This is done by checking the data
structure if the two vertices both have each other in
their respective neighbors list. If that is the case, the
system will then remove the vertices from the
neighbor list of the other.

For the load function, the system makes use
of an open source activity called Filechooser. There

was no need to edit the actual activity since it only
provided a medium for the system to open .obj files
present on the machine. When the system has
opened the file that was returned by the Filechooser
activity, it reads the file then stores each vertex and
face into the data structure and then renders the
loaded mesh into the screen.

For the save function, the system is limited
to only saving triangular meshes. After all the faces
are identified, the system then writes the .obj file
containing all the vertices and all the faces on the
mesh into the external memory of the machine and is
named based on the input of the user.

Figures 6 to 8 show some screenshots of the
actual system in use. In the screen shots, the
horizontal line in red color represents the x axis, the
green line represents the y axis. The z-axis, which is
not seen in the screenshots, is represented by a line
in blue color. It cannot be seen because the x-y plane
is coplanar with the plane corresponding the tablet
screen. The modeler uses a right-handed coordinate
system.

Fig. 6. Screenshot of the system with a sample
pyramid mesh model

Fig. 7. Screenshot with a star shaped mesh model

VCR
Typewritten Text
Proceedings of the DLSU Research Congress Vol 4 2016 ISSN 2449-3309

 Presented at the DLSU Research Congress 2016

De La Salle University, Manila, Philippines
March 7-9, 2016

Fig. 8. Screenshot showing a user about to rotate a
model using a three-finger gesture

3. TESTING, RESULTS AND
ANALYSIS

The system underwent two different types of
testing, i.e., a usability test and a simplified stress
test.

3.1 Usability Test

The usability test was conducted with the
help and input of 20 volunteer testers. They were
first shown a demonstration of the functionalities of
the system, specifically, on how to create and model
a 3D pyramid similar to the one shown previously in
Fig. 6. They were then asked to use the system to
create their own pyramid model. Afterwards, they
were requested to fill-up a simple evaluation form to
determine how easy or difficult it was for the users to
create a 3D model using the gesture-based 3D
modeling system. In particular, they were asked to
provide feedback on their experience in creating a
model, i.e., vertices, edges, faces, mesh, selecting
geometries, and modeling transformations.

The evaluation form feedback reflected that
most testers found it relatively easy to perform most
of the functionalities. However, the results also show
that the modeling transformations, particularly
translation and scaling provided the testers with the
least amount of ease compared to other
functionalities. It must also be noted that the testers
using the 10” Asus tablet provided more positive
feedback compared to the testers that used the 7”
Samsung tablet. This is most probably due to the
relatively smaller size of the screen and the number
of fingers that had to be used for the functionalities.

Fig. 9. Evaluation from testers with prior experience
in using a 3D modeling tool

Fig. 10. Evaluation from testers without prior
experience in using a 3D modeling tool

One interesting observation is that testers
who had no previous experience with 3D modeling
tools found the gestures intuitive compared to those
who had used 3D modeling tools before. This is
probably because, those who had experience in 3D
modeling were able to compare their testing
experience with their experience using other tools,
while those without experience had no prior basis on
the intuitiveness of the tool's interface. Figure 9
shows a bar graph of the feedback from testers that
have prior experience in using 3D modeling tools,
and Fig. 10 shows a bar graph for those without
prior 3D modeling experience.

3.2 Stress Test
The stress test was used to determine how the
system will perform under increasing load
conditions. Load, in this case, is measured in terms
of number of vertices and faces, and performance is a
value based on basic observed system slowdown such

VCR
Typewritten Text
Proceedings of the DLSU Research Congress Vol 4 2016 ISSN 2449-3309

 Presented at the DLSU Research Congress 2016

De La Salle University, Manila, Philippines
March 7-9, 2016

as frame rate drops and application crashes. The
stress test was performed on a 10” screen Asus
EEepad Transformer. The test was done simply by
loading 3D geometries with increasing number of
vertices and faces, after which some basic 3D
modeling operations were performed. Several 3D
models were tested ranging from a simple cube with
just 8 vertices to a pig model with the most number
of geometries, i.e., 3166 vertices and 6204 faces.

The stress test performance is summarized
in the graph shown in Fig. 11. It can be noted that
in cases where there are less than 100 vertices, the
system does not experience any performance issues.
All modeling transformations are performed without
any latency in refreshing and redrawing on the
screen. At higher vertex counts, specifically from 150
vertices to 330 vertices, the system experiences a
notable amount of latency in redrawing the 3D mesh.
At even higher vertex and face counts, possibly
between 400 and 600 vertices and from 600 to 1200
faces, there is a significant amount of latency in
which occasionally forces the tablet to prompt the
user to close the application due to
unresponsiveness. At over 3000 vertices and over
6000 faces the system can no longer consistently load
the mesh. It occasionally succeeds in loading the pig
mesh, but more often than not, force closes the
application.

Fig. 11. Stress test result, vertex count vs. latency

These results may be caused by one factor or
a combination of different factors. For one, the
system is implemented on top of a number of
platforms and APIs; specifically, it is implemented
using OpenGL ES which is implemented on top an
Android API which is implemented in Java. This
causes a lot of lower level processes such as dynamic
memory allocation to be abstracted during
development. This may be the cause of the relatively
slow performance of the system when loading
hundreds to thousands of vertices and faces. Another
factor could be the limitation of tablet PCs in terms
of computing power.

4. CONCLUSION AND FUTURE
WORK

We were able to develop a basic 3D mesh
modeling tool that runs on one of the newer tablet
platforms. Our project is just a groundwork for
future development of 3D mesh modeling tools on
tablet platforms. What we were able to develop still
pales in comparison to the WIMP based 3D modeling
systems available in the market today. The system
we developed is also not as comprehensive as a
modern 3D modeling tool should be. However, we
were able to show that the concept is possible and
that a 3D modeling tool on a tablet PC load 3D
models from WIMP interface 3D modelers and
conversely, save 3D models on a tablet PC that can
be loaded onto WIMP interface 3D modelers like
Blender and Wings 3D. We have also shown that the
basic concepts of computer graphics such as
modeling and viewing transformations can be
applied on a tablet based 3D modeling tool just as it
can be applied on WIMP interface 3D modelers.

There is still a lot of work that can be done
with respect to the system we developed. In terms of
usability, the feedback from usability testing
provided some insight for future incremental
improvements to the 3D modeler. The testers’
feedback reflected a need for a tutorial in the
application. This can be done by notifications or
maybe a help option in the menu. Several testers
commented that the modeling transformations are
too sensitive. This implies that the calibration of the
gestures and the modeling transformations need an
adjustment to reduce the sensitivity. Some testers
commented that certain gestures are unintuitive for
its corresponding function, especially the gesture for

VCR
Typewritten Text
Proceedings of the DLSU Research Congress Vol 4 2016 ISSN 2449-3309

 Presented at the DLSU Research Congress 2016

De La Salle University, Manila, Philippines
March 7-9, 2016

rotation. A long term solution would be user-centric,
i.e., the user will have the ability to customize
his/her own controls, for example, the user can
specify his own gesture for a certain action, and to
set parameters such as sensitivity according to
his/her personal preference.

We still need to think about how to
incorporate material properties (such as color) and
light sources for shading, as well as more advanced
viewing and modeling transformations such as user
controlled camera operations and modeling
transformations such as extrusion, pushing and
pulling. Inclusion of other 3D primitives such as
curves and surfaces can also be grounds for future
work

5. REFERENCES
Android Software Development Kit (2015). Available

online http://www. developer.android.com/sdk.

Igarashi, T., Matsuoka, S., & Tanaka, H. (1999).

Teddy: a sketching interface for 3D freeform
design. In Proceedings of the 26th annual

conference on computer graphics and interactive
techniques (pp. 409-416). New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co.

Jiao, X., Deng, H., and Wang F. (2010). An

investigation of two-handed manipulation and
related techniques in multi-touch interaction.
International Conference on Vision and Human-
Machine Interface (MVHI), pp. 565-568.

Kin, K., Miller, T., Bollensdorf, B., DeRose, T.,

Hartmann, B., and Agrawala, M. (2011). Eden: A
professional multitouch tool for constructing
virtual organic environments. ACM Human
Factors in Computing Systems (CHI), 1343-
1352.

Yang, C., Sharon, D., and M. van de Panne. Sketch-

based modeling of parameterized objects. In
ACM SIGGRAPH 2005 Sketches, SIGGRAPH
'05, New York, NY, USA, 2005.

VCR
Typewritten Text
Proceedings of the DLSU Research Congress Vol 4 2016 ISSN 2449-3309

VCR
Typewritten Text

