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Abstract:  A linear code is called an LCD (linear with complementary dual) code if it 

intersects with its dual trivially, i.e. a linear code C is LCD provided  0 CC . These codes, 

introduced by Massey in 1992, give an optimum linear coding solution for the two user binary 

adder channel. In this paper, we aim to construct some families of LCD codes. To this end, we 

use the characterization of an LCD code proved by Massey. We present construction based on 

some special types of matrices such as orthogonal, self-orthogonal, and antiorthogonal 

matrices. In particular, we obtain some classes of binary LCD codes using the permutation 

matrix and the all one matrix. In addition, we propose explicit construction of generator 

matrices of LCD codes using the generator matrices of some known codes such as self-dual 

codes and binary Hamming codes. For ,73  r the binary LCD codes that we obtained using 

the Hamming matrix rH  are optimal. We also prove that permutation equivalence of codes 

preserves the LCD-ness of codes. 
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1. INTRODUCTION 

Error-correcting codes play an important 

role in digital communication. Among all types of 

codes, linear codes are studied the most. Because of 

their algebraic structure, they are easier to 

describe, encode, and decode than nonlinear codes. 

In this paper, we study a subclass of linear codes 

known as LCD codes. Massey (1992) defined a 

linear code with complementary dual (LCD code) to 

be a linear code C such that }0{ CC . These 

codes have practical utility since they provide an 

optimum linear coding solution for two-user binary 

adder channel. They are also used in counter-

measures to passive and active side channel 

analyses on embedded cryptosystems (Carlet & 

Guilley, 2015). 

 Massey (1992) pointed out that the class 

of LCD codes is rich enough to contain 

asymptotically good codes. Sendrier (2004) 

confirmed this by showing that LCD codes meet the 

Gilbert-Varshamov bound. 

Dougherty et al. (2015) derived a linear 

programming bound on the largest size of an LCD 

code of given length and minimum distance. In the 

same paper, some combinatorial relations on the 

parameters of LCD codes were introduced. Some 

methods of constructing LCD codes were also 

proposed in (Dougherty et al., 2015). Yang and 

Massey (1994) gave the necessary and sufficient 

condition for a cyclic code to have a complementary 

dual. Esmaeli and Yari (2009) derived necessary 

and sufficient conditions for some classes of quasi-

cylic codes to be LCD codes. Recently, LCD codes 

over finite chain rings were studied in (Liu & Liu, 

2015). 

In this paper, we propose some explicit 

construction of LCD codes by applying the 

characterization given in (Massey, 1992).  We 

present some families of binary LCD codes using 

the permutation matrix and the all one matrix. We 

also obtain some classes of LCD codes from the 

generator matrices of self-dual codes and binary 

Hamming codes. 

2. PRELIMINARIES 

Let qF  be a finite field of order q. For a 

positive integer n, let 
n

qF  denote the vector 

space of all n-tuples over qF  . A linear code C of 

mailto:ederlina.nocon@dlsu.edu.ph
VCR
Typewritten Text
Proceedings of the DLSU Research Congress Vol 4 2016
	           ISSN 2449-3309



 

   Presented at the DLSU Research Congress 2016 

De La Salle University, Manila, Philippines 

March 7-9, 2016 

 

length n and dimension k over qF  is a k-

dimensional subspace of the vector space
n

qF .  

Let  21 ,, xxx  and  nyyy ,,1   be 

vectors in
n

qF . The (Hamming) distance, d(x, y), 

between x and y is the number of coordinates 

in which the vectors x and y differ, i.e. 

}|{),( ii yxiyxd  . The (Hamming) weight, 

wt(x), of a vector x is the number of nonzero 

components in x. We define the minimum 
weight of a code C to be the weight of the 

nonzero vector of smallest weight in C. The 

minimum distance of a code C is defined 

by },({min)(
,,

yxdCdd
yxCyx 

 . We use qdkn ],,[  

code as the notation for a k-dimensional linear 

code of length n over qF  with minimum distance 

d. The inner product of vectors x and y is defined 

by nn yxyxyx  ...11 . The dual code or 

orthogonal code 
C  of a code C is the set of all 

vectors of length n that are orthogonal to all 

codewords of C, i.e. 0|{  yxFxC n
q for 

all }, Cyx  .  

A nk  matrix G whose rows form a basis 

for an ],[ kn linear code C is called a generator 

matrix of the code C. If G is a generator matrix for 

C, then }|{ k
qFaaGC  . A parity check matrix for 

C is an nkn  )( matrix H such that Cc   if and 

only if 0TcH . 

Now, we define formally an LCD code. 

Definition 1. A linear code with complementary 

dual (LCD) is a linear code C which satisfies the 

condition }0{ CC . 

Remark. Let C  be a linear code. 

i. If C is an LCD code, then so is C  since 

CC  )( .  

ii. If C is an LCD code of length n over qF , 

then  CCF n
q .  

Let C  be the orthogonal projector from n
qF onto 

C, i.e. the linear mapping from n
qF onto n

qF defined 

by 












Cvif

Cvifv
v C

0
. 

The following theorem gives a complete 

characterization of LCD codes. 

Theorem 1. (Massey, 1992) If G is a generator 

matrix for the linear code C, then C is an LCD 

code if and only if the kk matrix TGG is 

nonsingular. Moreover, if C is an LCD code, then 

GGGG TT
C

1)(  is the orthogonal projector 

from n
qF onto C. 

Corollary 2. Let C be a linear code and let H be a 

parity-check matrix of C. Then C is an LCD code 

if and only if THH is invertible.  

Corollary 3. Let C be a linear code and let H be a 

parity-check matrix of C. Let G be a generator 

matrix of C and H be a parity-check matrix. Then 

the following statements are equivalent: 

i. C is an LCD code. 

ii. det 0)( TGG . 

iii. det 0)( THH . 

3. RESULTS 

 
3.1 LCD Codes and Permutation 

Equivalence 

Often we are interested in properties of 

codes, such as weight distribution, which remain 

unchanged when passing from one code to another 

that is essentially the same. We use the term 

equivalence when comparing two codes which are 

``essentially the same''. Here, we define the 

simplest form of equivalence, called permutation 

equivalence, and prove that it preserves the LCD-

ness of a code. 

Definition 2. Two codes C and C’ of length n are 

said to be permutation equivalent provided there is 

a permutation of coordinates which sends C to C'. 

Equivalently, C and C’ are permutation equivalent 

if there exists a permutation   of the n symbols {1, 

2, …, n} such that ')',...,','(' 21 Ccccc n   iff 

)(' cc  for some Cc  , where 
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),...,,(),...,,()( )()2()1(21 nn ccccccc   . 

Note that equivalent codes have the same 

minimum distance and, so, the same error 

detection/correction capability. Hence, for studying 

error detection/correction, we may work with 

equivalent codes if that helps our study. We now 

show that permutation equivalence of codes 

preserves the LCD-ness of a code. 

Theorem 4. Suppose 1C and 2C  are two permuta-

tion equivalent linear codes. If 1C is LCD, then 

2C is also LCD. 

Proof. Assume that }0{22 
CC  . Then there is a 

nonzero vector u such that 2Cu   and


 2Cu . By 

Definition 2, since 2C is permutation equivalent to 

1C , there exists a permutation of coordinates   

such that }|)({ 12 CccC   . Hence, )(xu   for 

some vector 1Cx  . Since


 2Cu , we have 0vu  

for all 2Cv  . This implies that 0)()(  yx  , so 

0 yx  for all 1Cy  .  Thus,


 1Cx  and hence 


 11 CCx .  Since 1C  is an LCD code, x = 0.  This 

contradicts our assumption that )(xu   is a non-

zero vector. Therefore, 2C  is an LCD code. □ 

3.2 LCD Codes from Orthogonal, 

Antiorthogonal and Self-orthogonal 

Matrices 

Theorem 1 provides a concrete way of 

constructing LCD codes, i.e. by finding a generator 

matrix G such that TGG  is nonsingular. We note 

however that this condition does not imply that G 

is nonsingular. On the other hand, it is easy to see 

that the matrix TGG  is nonsingular whenever G is 

nonsingular. Thus by Theorem 1, every nonsingular 

matrix G generates an LCD code. The following 

result is easy to see. 

Proposition 5. If G is a nonsingular matrix nn , 
then G generates the trivial [n, n, 1] LCD code.  

This result shows that a nonsingular 

generator matrix generates an LCD code with the 

most number of codewords but lacks the error-

correction capability. This type of code is less 

interesting; hence, to construct good LCD codes, we 

should avoid generator matrices G which are 

invertible. 

One way to construct a generator 

matrix G such that TGG is invertible is to 

force IGGT  , where I is the identity matrix of 

appropriate order. This can be done using the 

matrices which we define below. We use F 

to denote an arbitrary field. 

Definition 3. L e t  A be square matrix A over 

F.  Then: 

i. A is said to be orthogonal if IAAT  .  

ii. A is self-orthogonal if  ,OAAT   where 

O denotes the zero matrix of 

appropriate dimension. 

iii. A is antiorthogonal if IAAT  .  

Definition 4. L e t  B  be an nm matrix over 

F. Then  

i. B is said to be row-orthogonal 

if IBBT  . 

ii. B is row- self-orthogonal if OBBT  . 

iii. B is row-antiorthogonal if IBBT   

In view of Theorem 1, it is apparent 

that orthogonal matrices generate LCD 

codes as indicated in the following corollary. 

Corollary 6. Let G be a generator matrix for a 

code over a finite field qF . If G is a row-orthogonal 

matrix then G generates an LCD code. 

Notice that a matrix A is nonsingular 

whenever A is orthogonal since IAAT   

implies TAA 1 . This type of matrix does 

not generate good LCD codes. On the other 

hand, a row-orthogonal matrix is not 

necessarily square and thus a plausible generator 

of an LCD code with good parameters.  

Proposition 7. (Massey, 1998) Let G = [ AI : ] 
be a generator matrix in standard form of a linear 
code C. Then C is an LCD code if A is row-self-
orthogonal or, equivalently, if G is row-orthogonal. 

The next results give generator 

matrices of LCD codes which make use of 

antiorthogonal matrices. 

Proposition 8. (Massey, 1998) If B is any m × m 
antiorthogonal matrix and Q is any k × m matrix, 

then ]::[ QBQIG   is a generator matrix of an 

LCD code of length n = k + 2m and dimension k. 

Proposition 9. (Massey, 1998) If Q is any k × k 
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matrix, C is any k × m row-self-orthogonal matrix, 
and A is any m × m orthogonal matrix, then 

]:[ QCAIG  , is a generator matrix of an LCD 

code of length n = k + m and dimension k. The 
same holds true if A is any m × m antiorthogonal 
matrix.  

For the rest of this subsection, we restrict 

our construction of matrices to the binary field 2F  

in order to obtain generator matrices of binary LCD 

codes. We now construct some families of binary 

LCD codes using the permutation matrix and the 

all one matrix using the preceding results.  

Permutation matrix is known to be 

orthogonal, and hence nonsingular. By Proposition 

5, a permutation matrix P of order n generates the 

trivial [n, n, 1] LCD code. We use this information 

to construct a class of 1-error correcting LCD codes 

of rate 1/3. 

Proposition 10. Let P be the permutation matrix of 

size n. Then ]::[ PPPG   generates an LCD code 

of parameters ].3,,3[ nn  

Proof.  It is easy to see that G is row-orthogonal. By 

Corollary 6, G generates an LCD code. The 

parameters of the code generated by G are clear 

from its construction. □ 

We generalize this result to a class of LCD codes 

with rate 1/k and minimum distance k in the 

following proposition. The proof follows the same 

argument as in Proposition 10.  

Proposition 11. Let P be a permutation matrix of 

size n and let k be a positive odd integer. Then 














  

timesk

PPPG ::: generates an LCD code with 

parameters ].,,[ knkn   

Let nJ denote the all one nn  matrix. We use 

this matrix to construct a class of binary LCD codes 

of rate 1/2. The next lemma is easy to see. 

Lemma 12. If n is even, then nJ is self-orthogonal. 

Proposition 13. Let nJ be the all one matrix, where 

n is even. Then ]:[ JIG n  generates a binary 

LCD code with parameters [2n, n, 2]. 

Proof. By Proposition 7 and Lemma 12, G generates 

an LCD code. From the construction of G, it is easy 

to see that the code C generated by G has length 

2n, dimension n and minimum distance 2. □ 

Example 1. ]:[ 66 JIG  generates a [12, 6, 2] 

binary LCD code.  

The following corollary to Theorem 1, which also 

uses the all one matrix, gives us an alternative 

generator matrix of an LCD code. 

Corollary 14. (Dougherty et al., 2015) Let G be a 

generator matrix for a code over a finite field. 

If nn
T IJGG  , n even, then G generates an LCD 

code.  

3.3 LCD Codes from Generator Matrices 

of Other Linear Codes 

Massey (1992) showed that the asymptotic 

goodness of LCD codes follows trivially from that of 

general linear codes. He showed that for every 

linear code C, there always exists a corresponding 

LCD code by modifying an arbitrary [n, k] linear 

code to produce an LCD code whose minimum 

Hamming distance is at least as good. 

3.3.1 Self-dual Codes 

A self-dual code cannot be an LCD; 

however, we can take advantage of its properties to 

construct LCD codes. Recall that a linear code C is 

self-dual if CC . This implies that a generator 

matrix G of a self-dual code C is also a generator 

matrix of its dual code C . Thus, OGGT   and so 

G is row-self-orthogonal. Let ]:[' GIG  . Then, 

.'' IGG T   

Theorem 15. Let G be a nk  generator matrix of a 

self-dual ],,[ dkn  code over qF . Then  GIG :'  is 

a generator matrix of an LCD code of length n + k, 
dimension k and minimum distance d + 1. 

Proof. Let C be the code generated by G'. From the 

preceding discussion, G' is a row-orthogonal matrix. 

Then C is an LCD code by Proposition 7. The 

minimum distance and the dimension of C are clear 

from the construction of G’. □ 
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Example 2. Consider the binary Golay code of 

length 24. It is a self-dual code with generator 

matrix  ,: AI  where 















































100011101101

000111010011

001110111101

011101100001

111011010001

110110100011

101101001111

011010001111

110100011101

101000110011

010001111111

111111111110

A  

The matrix A is orthogonal since 12IAAT  . It is 

easy to see that the matrix ]::[ AIIG   is row-

orthogonal and generates a binary LCD code with 

parameters [36, 12, 9]. 

Let ]:[ AIG  be a systematic generator 

matrix (i.e., generator matrix in standard form) of a 

binary self-dual code. Then OGGT  . This implies 

that IAAT  , and so A is either orthogonal or row-

orthogonal. By Corollary 6, A generates an LCD 

code. Moreover, since IAAT  , each row of A is 

orthogonal to every other row of A but has a scalar 

product of 1 with itself. This means that any 

collection of rows of A forms a matrix which 

generates a binary LCD code. This proves the 

following result. 

Theorem 16. Let ]:[ AIG   be a systematic 

generator matrix of a binary self-dual code. Then 

i. A generates an LCD code. 
ii. Any matrix whose rows are a collection of 

rows of A generates an LCD code. 

This result indicates that we can randomly 

choose rows from A to form a generator matrix of a 

binary LCD code with high rate and good error-

correction capability. In general, if ]:[ AIG   is a 

systematic generator matrix of a self-dual code 

over qF , then A is an antiorthogonal or a row-

antiorthogonal matrix. Hence, by Propositions 8 

and 9, we can use A to generate an LCD code 

over qF . 

Example 3. Using the rows of matrix A in Example 

2, we obtain binary LCD codes with parameters 

[12, 6, 3], [12, 8, 2] and [12, 4, 5].  

3.3.2 Binary Hamming Codes 

Binary Hamming codes are a class of 

binary linear codes. Let 12  rn , with 2r . Then 

the )12(  rr  matrix rH  whose columns, in 

order, are the numbers 12,,2,1 r  written as 

binary numerals, is the parity check matrix of an 

],12[ rnkn r   binary code. Moreover, any 

binary code with parameters ]3,12,12[  rrr  is 

equivalent to the binary Hamming code (Huffman 

& Pless, 2003, p. 29).  

As mentioned earlier, a convenient way of 

constructing a parity check matrix rH is by 

forming a matrix whose ith column is the binary 

representation of the number i (when necessary, we 

put leading 0s to have an r-tuple). The following 

lemma gives a recursive construction of a parity 

check matrix rH .  

Lemma 17. Let rH  be a parity check matrix of a 

binary Hamming code of length ,12  rn with 2r . 

Suppose that the ith column of rH  represents the 

binary representation of the number i. Then 

,
1

1

121121
1 















rrr
r

HOH

JO
H

rr
 

where nmO   denotes an nm zero matrix and 

nmJ  an nm  all one matrix. 

The next lemma, which counts the number 

of 1s in the rows of the matrix rH , can be proved 

using Lemma 17 by induction on r.  

Lemma 18. Let rH  be a parity check matrix of a 

binary Hamming code of length 12  rn , 

with 2r . Then the number of 1s in each row of 

rH is even. In particular, the number of 1s in each 

row of rH  is .2 1r  

Lemma 19. For 3r , the parity check matrix rH  

of a binary Hamming code is row-orthogonal 

over 2F . 

Similarly, we can prove Lemma 19 by 

induction on r using Lemma 17 and 18. We now 

state the main result in this subsection which 

describes a family of binary LCD codes. 
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Theorem 20. Let rH  be a parity check matrix of a 

binary Hamming code of length .12  rn Then 

]:[ rr HIG   generates a binary LCD code of 

length 12  rr and dimension r.  

Proof.  The statement that ]:[ rr HIG   generates 

an LCD code follows from Lemma 19 and 

Proposition 7. The length and the dimension of the 

code generated by G are clear from the construction 

of G. □ 

For ,73  r  we list the parameters of the 

binary LCD codes generated by ]:[ rr HIG   in 

Table 1. We note that the dual codes of these codes 

are also LCD. It is interesting to note that all of the 

LCD codes in Table 1 are optimal based on the 

database of codes compiled in (Grassl, n.d.). 

  Table 1. Optimal binary LCD codes obtained using 

                 Hamming matrix 

4. CONCLUSIONS 

This paper is devoted to construction of 

LCD codes. Constructions based on orthogonal/row-

orthogonal matrices and generator matrices of self-

dual codes and binary Hamming codes were 

presented. Optimal binary LCD codes were 

obtained from the construction based on the 

Hamming matrix. We also proved that permutation 

equivalence of codes preserves the LCD-ness of a 

code.  

It is worthwhile to consider other known 

linear codes to construct LCD codes with good 

parameters. It would be interesting to present a 

systematic construction of row-orthogonal matrices 

that will yield an LCD code with high rate and 

large minimum distance. It is also noteworthy to 

see codes from designs and codes from graphs in 

the construction of LCD codes. 
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