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Abstract:  The self-organizing map (SOM) methodology does vector quantization and 

clustering on the dataset, and then projects these clusters in a lower dimensional 

space, such as 2D map, by positioning similar clusters in locations that are spatially 

closer in the lower dimension space.  This makes the SOM methodology an effective 

tool for data visualization.  However, in a world where mined information from big 

data have to be available immediately, SOM becomes an unattractive tool because of 

its space and time complexity.  In this paper, we propose an alternative visualization 

methodology for large datasets with clustering information without the speed and 

memory constraints inherent to SOM.  To demonstrate the efficiency and the vast 

potential of the proposed scheme as a fast visualization tool, the methodology is used 

to cluster and project the 3,823 image samples of handwritten digits of the Optical 

Recognition of Handwritten Digits dataset. 
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1. Introduction 

 

One of the enablers of Big data is the 

intuitive presentation of information such as data 

visualization (ITU Telecommunication 

Standardization Bureau, 2013).  Visualization 

provides intuitive display of unstructured 

information e.g. emails, text messages, audio as well 

as video streams.  These types of unstructured data 

continuously grow requiring visualization tools to 

have more efficient running performance.   One of 

these visualization tools is the Self-Organizing Map 

(SOM).  

SOM represents data using nodes as points 

in the two-dimensional (or three-dimensional) vector 

space.  These SOM nodes have weight vectors which 

are updated per iteration depending on the input 

vector from the data set.  Generally, the weight 

vectors are updated as follows. 

( 1) ( ) ( ) ( ) || ( ) ( ) ||i i i it t G t t t t   w w α x w     (Eq. 1) 

where t represents the iteration number, wi 

represents the weight vector of the ith node, x is the 

input vector chosen randomly from the training set, 

αi(t) is the learning rate of the adaptation process, 

G(t) is a window function which is typically a 

Gaussian window or a rectangular window, and    

||x(t) ‒ wi(t)|| is the Euclidean distance between x(t) 

and wi(t).  The intuitive display of the data’s relative 

distance, distribution and clusters make SOM an 

attractive tool for data visualization.  However, for 

large dataset, Eq. (1) has to be performed several 

times, increasing SOM’s complexity. 

For N’ number of SOM nodes with M weights 
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per node, the computational requirement per 

iteration per node is O(N’2×M) for distance 

computation, O(N’2×MlogM) for winning node  

selection, and O(N’2×M) for weight update 

computation using a Gaussian window.  That is, for 

large amount of samples N, the complexity becomes 

O(N×N’2×M). 

An alternative simpler data visualization 

tool, called the Multidimensional Scaling (MDS), 

makes use of singular-value decomposition for data 

mapping to remove the need for iteration which is 

highly based on the number of samples.  The MDS 

reveals the structure of a data set, typically high 

dimensional data, by transforming the pairwise 

dissimilarities of each element (in the data set) into 

distances in low dimensional vector space  (Torgeson, 

1958),  (Cox & Cox, 2001),  (Bartholomew, Steele, 

Moustaki, & Galbraith, 2008).  Recent works  (Shang, 

Wheeler, Zhang, & Fromherz, 2004),  (Cheung & So, 

2005),  (So & Chan, 2009),  (Costa, Patwari, & Hero, 

2006) on wireless sensor nodes (WSN) make use of 

MDS on node localization problem where only the 

nodes’ receive signal information are known.  Despite 

of its applicability to complex problems, e.g. in 

marketing and wireless networks, it lacks clustering 

and distribution information which make it 

ineffective data visualization tool.  

In this work, we present an alternative data 

visualization methodology to overcome the complexity 

issue of the SOM in large number of samples and the 

limited information provided by the MDS as a 

projection tool.  This proposed scheme is discussed in 

section 2 in details.  To demonstrate its vast potential 

as a visualization tool, an experiment is performed 

using the Optical Recognition of Handwritten Digits 

dataset  (Bache & Lichman, 2013). Results and 

analysis of which are presented in section 3.  Finally, 

conclusion and future works are provided in section 4. 

 

 

2.  LARGE DATA VISUALIZATION 

METHODOLOGY 
 
Consider a large database of M-dimensional 

data with N samples whose attribute vector is 

denoted by ϕi
(M), where i = 1, 2, …, N.  The relative 

Euclidean distance measurement between two data 
entries i and j of the given data set is given by 

( ) ( )[ ] ||| ||M M

ij i jD d       (Eq. 2) 

where ||•|| denotes the Frobenius norm.  Applying 

classical MDS for large value of M requires M×M 

memories e.g. 1010 for N = 105 data.  Applying SOM, 

similarly, is impractical.  The task is to provide 

mapping of N high-dimensional in R(M) onto a low-

dimensional vector space, e.g. R(2) while providing the 

clustering information and data distribution. 

The proposed scheme is designed to emulate 

SOM by providing data proximity and clustering 

information.  It is mainly divided into three phases: 

(1) data summarization into prototypes, (2) clustering 

of prototypes and (3) data mapping, as shown in 

Figure 1.  The first phase aims to decrease the 

number of data samples, N, into smaller number of 

prototypes, N’, by performing k-means on the large 

dataset.  Since N’ equals the number of prototypes, 

then N’ equals the number of clusters in this 

application of k-means.  The second phase performs 

prototype clustering to introduce this information in 

data mapping.  For supervised learning, the number 

of clusters, called the small k, is usually set to be 

equal to the number of actual classes in the data.  To 

distinguish k of phase 1 k-means from k of phase 2 k-
means, the former is called big K (which is equal to 
N’) while the latter is called small k.   Finally, phase 

3 performs the projection of the clustered prototypes 

onto a lower dimensional space, e.g. 2-dimensional 

(2D) or 3-dimensional (3D) space, for visualization. 

 

2.1 Phase 1: The first level k-means for 
vector quantization 
 One of the requirements of effective data 

visualization is to provide compact representation of 

a dataset.  This is the objective of the first phase 

 

Fig 1. Block diagram of the proposed methodology. 
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which performs vector quantization to decrease the 

dataset size by quantizing similar data to their 

respective representative attribute vectors, called in 

this work as the prototypes.  This phase can 

essentially be accomplished thru Expectation-

Minimization (EM) algorithms and vector 

quantization methods.  In the simple implementation 

of proposed methodology, we use k-means, also 

known as Lloyd’s algorithm  (Lloyd, 1982), to convert 
the large dataset with N samples into a smaller set of 

N’ prototypes such that N’ << N.  These prototypes are 

nothing but the centroids of the N’ clusters that are 

formed by ordinary k-means, setting the number of 

clusters to N’. 

 To aid in the discussion, the clusters formed 

in the first application of k-means are called “big-K” 

clusters and the centroids of these big-K clusters 

formed, as mentioned, are called the prototypes.  As 

such, the value of N’ is “big-K”, denoted by the capital 

K, and this corresponds to the size of a SOM if the 

SOM methodology were used.  To illustrate, if the 

SOM would have been a 20×20 map, then K in this 

approach would be set to 400. 

 In summarizing the data, the distribution of 

the original dataset must be reflected by the 

distribution of the prototypes.  We attempt to achieve 

this by choosing randomly the initial values of the 

prototypes from the large dataset such that for some 

sufficiently large K, the initial distribution of K  

prototypes reflects the distribution of the original 

dataset  (Dinov, Christou, & Gould, 2009).  

Discussion on whether the distribution of the sample 

prototypes after first application of k-means 

algorithm reflect the distribution of the actual large 

dataset or not, is beyond the scope of this paper.  The 

value of big-K, however, in terms of emulating the 

SOM methodology, is nothing but the number of 

nodes in a SOM. 

 

2.2 Phase 2: The second level of k-means 
for prototype clustering 

 Phase 2 involves a second application of the 

k-means algorithm.  This time, the input is no longer 

the large original dataset, but just the smaller set 

represented by the K prototypes.  In this work, the 

clusters of K prototypes formed in this level are 

called the “small-k”, denoted as k, clusters and the k 

centroids are referred to as the centroids, to 

distinguish them from the K prototypes from phase 

1.  The second level k-means of phase 2 performs the 

same initialization process for anchors but does not 

aim to reflect the dataset distribution, rather to 

provide clustering information of the actual datasets 

via the K prototypes. 

To recapitulate, the number of anchors is 

less than the number of prototypes, which is in turn 

much less than the number of original samples in the 

dataset. We have N ≫ K > k. 

 

2.3 Phase 3: Anchor projection mapping via 
Multidimensional scaling 
 Phase 3 transforms the high-dimensional 

prototypes into 2D representation for visualization 

via Multidimensional scaling (MDS).  Let ΦK ϵ R(M) 

be the set of K prototype vectors.  We consider the 

two-dimensional vector space, R2, for data mapping 

as we try to project K prototypes into X ϵ R2 via MDS.  

Furthermore, let D be the pairwise distance of ΦK, 

applying Equations (3), (4) and (5) on D gives the 

following expressions for the location of data             

X = (x, y) on the Cartesian plane. 

20.5K K K K K K K K    B J D J   (Eq. 3) 

0.5 T

K K K K K K K K    B U S U   (Eq. 4) 

1 2

2 2 2 2K K  X U S     (Eq. 5) 

where J = I − n
‒111T and D2 = [d2

ij].  The K Cartesian 

coordinates of X are the corresponding coordinates of 

K prototypes.  For large dataset of size N, the 

distance matrix requires N×(N-1) memories.  Thus, 

mapping the prototypes to 2D via MDS would only be 

feasible after the application of the first level k-

means, i.e. after data summarization into prototypes. 

 

3.  EXPERIMENT RESULTS AND 

ANALYSIS 
 

 The proposed methodology for large dataset 

visualization was evaluated using the training 

dataset from the Optical Recognition of Handwritten 

Digits dataset  (Bache & Lichman, 2013).  The 

dataset contains 3,823, handwritten digits samples 

which were taken from 32×32 bitmaps of 

handwritten digits images and downsampled into 

8×8 images.  Thus, each sample has 64 attributes 

with integer values from 0 to 16 and label from 0 to 

9.  Because it will require large amount of memory to 

map the whole database on a Cartesian plane, the 

large amount of samples were first compressed into 

manageable amount of data via the first level k-

means (phase 1).  That is, the 3,823 handwritten 

samples were compressed into 400 (K = 400) 

prototypes, corresponding for example to a 20×20 

SOM.   
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The resulting prototypes were then clustered 

into 10 groups, corresponding to the ten decimal 

digits via the second level k-means (phase 2).  This 

will hopefully provide clustering information when 

the prototypes are projected in 2D.  Table 1 shows 

the 10 clusters formed after applying the second level 

k-means algorithm on the 400 prototypes.  The first 

column corresponds to the clusters and their 

respective legend (which will be used in the 2D 

mapping) while the second to tenth columns 

correspond to the number of prototypes per cluster.  

For example, there are 38 prototype digits 0 and one 

prototype digit 6 in cluster 0.  Similarly, there are 10 

prototype digits 1, one prototype digit 3, three 

prototypes digit 4 and 11 prototypes digit 9 in cluster 

1.   

The last step in performs MDS for data projection 

onto the 2D plane.  This phase aims to emulate the 

SOM display as shown in Figure 2. The SOM plot 

provides both clustering information and relative 

distance information between clusters.  For example, 

the handwritten digits with similar strokes are 

positioned adjacent to each other, e.g. clusters 8 and 

3, and 9 and 4.  

For the emulated SOM display, shown in Figure 3, 

clusters with similar strokes are positioned relatively 

near each other as well, such as the clusters “3”, “9”, 

“2” and “0” whose upper portion of the prototypes 

have similar strokes.  Furthermore, clusters “0” and 

“6” which have similar curvy strokes on the left 

portion of the prototypes are located side by side in 

the 2D map.  In contrast, cluster “6” is relatively far 

Table 1. Distribution of each handwritten prototypes to different clusters 
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Fig 2. SOM solution as applied to the handwritten 

digits dataset.  The colors and numbers are the 

clusters and label of each group, respectively.   
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Fig 3. Emulated SOM’s relative data distance and 

cluster information.  The arrows pointing a cluster 

indicate the majority of prototypes in that cluster 
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from clusters “2”, “9” and “3”, which despite of their 

proximity to “0”, clusters “2”, “9” and “3” have 

minimal resemblance with “6”.   

Clusters with significantly the same number 

of prototypes, shown as cluster “8”/“1” and “9”/“1”, 

detailed portions of the plot are provided in Figures 4 

and 5 to determine which prototypes are actually 

near each other.  Figure 4 shows that prototypes “1” 

and “4” are actually near each other.  These 

prototypes have the same vertical strokes at the right 

portion of the digit.  Similarly, Figure 5 shows that 

prototypes “7” and “9”, both with diagonal downward 

stroke, are also near each other. 

 

4.  CONCLUSIONS 
 

We presented an alternative scheme which 

emulates SOM as a visualization tool for large 

dataset.  The proposed approach summarizes the 

large dataset first via k-means algorithm.  To 

include clustering information in the visualization, 

second k-means is applied to the summarized data, 

called the prototypes.  These prototypes are then 

projected to the 2D map via the application of MDS.  

Similar to SOM, the emulated SOM was able to 

provide cluster information and similarity distance 

of the prototypes as shown in Figures 2 - 5.  With N 

being the number of samples and M being the 

number of attributes, the proposed scheme 

complexity for large N is O(NM) as compared to 

SOM which has O(N2M).  Future considerations 

include addressing the limitation of MDS on higher 

dimensional data (curse of dimensionality). 
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