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Abstract Using the Fields inequality decomposition procedure, this paper seeks to investigate 

how the presence of an endogenous variable affects factor contribution estimates. In particular, 

we are interested in decomposing the discrepancy between Ordinary Least Squares (OLS) and 

Linear Instrumental Variables (IV) model based factor contribution estimates. This study adopts 

Monte Carlo simulation techniques to characterize small and large sample properties. 
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1. INTRODUCTION  

Regression based decomposition methods have 

contributed immensely to the analysis of 

statistical discrimination and inequality. Since 

the seminal work of Oaxaca (1973) and Blinder 

(1973) on statistical discrimination, a significant 

number of studies on inequality decomposition 

analysis have been written, largely adapting to 

advances in the econometrics discipline.  

 

Despite advances in methods for inequality 

analysis, a gap in practical applications has been 

noticeable. This is particularly true for a class of 

decomposition methods that rely on the 

regression framework such as the Fields factor 

contribution estimator which decomposes 

inequality (Fields, 2003).  

 

Some papers estimating factor contributions, to a 

certain extent, account for specification and other 

classical errors that expectedly induce deviations 

from the true model. Dacuycuy (2009) 

investigated how functional assumptions on the 

wage—experience relationship would affect factor 

contributions and Dacuycuy and Dacuycuy (2012) 

developed a bootstrap based procedure to 

investigate factor contributions to changes in 

inequality. Dacuycuy and Dacuycuy (2014) focus 

on the simulation properties of the Fields 

contribution estimator when measurement errors 

are encountered. 

 

In this short paper, we use Monte Carlo 

simulation methods to determine the properties 

of the inequality contribution estimator when 

endogenous variables are present. Using simple 

mathematical manipulations, we decompose the 

statistical discrepancy between IV and OLS 

based factor contribution estimates. A related 

paper by Bigotta, Krishnakumar and Rani (2012) 

shows asymptotic properties of the inequality 

factor share estimators but did not account for 

the possibility of having econometric problems.  

 

This note is organized as follows. Section 2 

revisits the Fields decomposition framework and 

discusses the role of endogenous variables by 

offering two propositions. Section 3 details the 

simulation procedure and results and the last 

section concludes.  

 

2. REVISITING THE 

FIELDS 

DECOMPOSITION 

FRAMEWORK 

 
One of the virtues of the framework is its 

computational simplicity. Consider the typical 

regression function 𝑦𝑖 = 𝒙𝑖
′𝛽 + 𝜖𝑖 , 𝑖 = 1,2, … , 𝑛. As 

discussed in Fields (2003), the contribution of the 

𝑗𝑡ℎ factor to overall inequality, 𝜃𝑗 is conveniently 

given by the following expression: 

 

𝜃𝑗
𝑜𝑙𝑠 =

�̂�𝑗
𝑜𝑙𝑠�̂�(𝒙𝑗)�̂�𝑦,𝑥

�̂�(𝒚)
, 𝑗 = 1,2, … . , 𝑘 

(1) 

 

where �̂�𝑦,𝑥 =
𝑐𝑜𝑣(𝒙𝑗,𝒚)

�̂�(𝒚)�̂�(𝒙𝑗)
 pertains to the correlation 

coefficient of the dependent variable and the 𝑗𝑡ℎ  

factor; �̂�𝑗
𝑜𝑙𝑠 refers to the coefficient of the factor j 

and �̂�(𝒙𝑗)  is just the sample standard deviation 

estimator.  

 

Given the definition, we can rewrite (1) as 

 

𝜃𝑗
𝑜𝑙𝑠 =

�̂�𝑗
𝑜𝑙𝑠𝑐𝑜𝑣(𝒙𝑗 , 𝒚)

[�̂�(𝒚)]2 , 𝑗 = 1,2, … . , 𝑘 
(1’) 

 

It is obvious from formula (1) that without 

variable mismeasurements, omitted variables 

and other inconsistency – inducing problems, 

𝜃𝑗
𝑜𝑙𝑠converges to the true factor contribution if the 

true data generating process is linear. In the 

absence of problems inducing inconsistency, 

�̂�𝑗
𝑜𝑙𝑠 converges to 𝛽𝑗

∗ in probability while the other 

statistics, namely, the standard deviation and 

correlation will converge to their respective true 

parameters. Thus, we have 

 

𝜃𝑗
∗ =

𝛽𝑗
∗𝜎∗(𝑥𝑗)𝜌𝑡

∗

𝜎∗(𝑦)
, 𝑗 = 1,2, … . , 𝑘 

(2) 

 

To understand how endogeneity affects factor 

contribution estimates, we have the following 

propositions: 

Proposition 1  (Endogenous regressor) For 

simplicity, consider the linear regression model 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜖𝑖  for a random sample of 

size n. Suppose 𝒙𝟏 is an endogenous regressor, 

that is 𝑐𝑜𝑣(𝒙𝟏, 𝝐) > 0 . Then 𝜃1
𝑒𝑛𝑑𝑜 > 𝜃1

∗. 
 

Proof: 

 



 
 

TPHS-I-007     3   
 Proceedings of the DLSU Research Congress Vol. 3 2015 

   Presented at the DLSU Research Congress 2015 

De La Salle University, Manila, Philippines 

March 2-4, 2015 

 

The correlation between y and 𝒙𝟏 is overstated 

since 𝑐𝑜𝑣(𝒚,  𝒙𝟏) = 𝑐𝑜𝑣(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖,  𝒙𝟏) =
𝑐𝑜𝑣(𝛽1𝑥1,  𝒙𝟏 ) + 𝑐𝑜𝑣(𝝐,  𝒙𝟏 ) and the estimate for 𝛽1 

is upward biased because of the assumed positive 

covariance between 𝒙𝟏 and the error term 𝝐. This 

proves the presence of endogeneity overstates the 

factor’s contribution. 
 

The standard approach to remedy the problem is 

to use instrumental variables that are assumed 

to be highly correlated with the endogenous 

variable but are not correlated with the error 

term. Using the second stage regression in a 

linear IV framework, the factor contribution 

estimator now becomes 

 

 

𝜃𝑗
𝑖𝑣 =

�̂�𝑗
𝑖𝑣𝑐𝑜𝑣(𝒛𝑗 , 𝒚)

[�̂�(𝒚)]2 , 𝑗 = 1,2, … . , 𝐽 
(3) 

 

where �̂�𝑗
𝑖𝑣 is the estimate based on  𝒛𝑗 is the 

instrument which may be equal to the predicted 

value of 𝒙𝑗. Because it comes from the first – 

stage regression between the endogenous 

variable and the instrument, it does not have an 

effect as great as 𝒙𝑗. This implies that care should 

be exercised in determining the instrument. This 

concern brings us back to the fundamental 

requirement of having strong instruments. Using 

equation (1’), we have 

𝜃𝑗
𝑜𝑙𝑠 = [

�̂�𝑗
𝑜𝑙𝑠

�̂�𝑗
𝑖𝑣

]
𝑐𝑜𝑣(𝒙𝑗 , 𝒚)

[�̂�(𝒚)]2 �̂�𝑗
𝑖𝑣 

(4) 

 

If there is endogeneity, it is still possible to 

measure the discrepancy between the two factor 

contribution estimators. This can be shown using 

the following proposition: 

Proposition 2 Assume that 𝒙𝐣 is endogenous 

and it is instrumented by 𝒛𝐣. Using factor 

contribution estimators (3) and (4), the 

discrepancy between the estimators is given by  

Δ̂𝑗 = {
�̂�𝑗

𝑜𝑙𝑠(𝑐𝑜𝑣(𝒙𝑗,𝒚)−𝑐𝑜𝑣(𝒛𝑗,𝒚))+(�̂�𝑗
𝑜𝑙𝑠−�̂�𝑗

𝑖𝑣)𝑐𝑜𝑣(𝒛𝑗,𝒚)

[�̂�(𝒚)]2 }. 

 

Proof: Define Δ̂𝑗 as the difference between the two 

factor contribution estimators. 

 

Δ̂𝑗 = 𝜃𝑗
𝑜𝑙𝑠 − 𝜃𝑗

𝑖𝑣 

 

(5) 

Substituting (3) and (4) into (5), 

Δ̂𝑗 = [
�̂�𝑗

𝑜𝑙𝑠

�̂�𝑗
𝑖𝑣

]
𝑐𝑜𝑣(𝒙𝑗 , 𝒚)

[�̂�(𝒚)]2
�̂�𝑗

𝑖𝑣 −
�̂�𝑗

𝑖𝑣𝑐𝑜𝑣(𝒛𝑗 , 𝒚)

[�̂�(𝒚)]2
 

(6) 

 

Manipulating, we have 

Δ̂𝑗 =
�̂�𝑗

𝑖𝑣

[�̂�(𝒚)]2 {
�̂�𝑗

𝑜𝑙𝑠𝑐𝑜𝑣(𝒙𝑗 , 𝒚) − �̂�𝑗
𝑖𝑣𝑐𝑜𝑣(𝒛𝑗 , 𝒚)

�̂�𝑗
𝑖𝑣

} 
(7) 

 

Δ̂𝑗 = {
�̂�𝑗

𝑜𝑙𝑠𝑐𝑜𝑣(𝒙𝑗 , 𝒚) − �̂�𝑗
𝑖𝑣𝑐𝑜𝑣(𝒛𝑗 , 𝒚)

[�̂�(𝒚)]2 } 

 

(8) 

 

Adding and subtracting the counterfactual term 

�̂�𝑗
𝑜𝑙𝑠𝑐𝑜𝑣(𝒛𝑗 , 𝒚) to (8), we have 

 

Δ̂𝑗

= {
�̂�𝑗

𝑜𝑙𝑠𝑐𝑜𝑣(𝒙𝑗 , 𝒚) − �̂�𝑗
𝑜𝑙𝑠𝑐𝑜𝑣(𝒛𝑗 , 𝒚) + �̂�𝑗

𝑜𝑙𝑠𝑐𝑜𝑣(𝒛𝑗 , 𝒚) − �̂�𝑗
𝑖𝑣𝑐𝑜𝑣(𝒛𝑗 , 𝒚)

[�̂�(𝒚)]2 } 

 

(

9

) 

 

Grouping similar terms, we can arrive at the 

result. 

 

Denoting Δ̂𝑗
1 =

�̂�𝑗
𝑜𝑙𝑠(𝑐𝑜𝑣(𝒙𝑗,𝒚)−𝑐𝑜𝑣(𝒛𝑗,𝒚))

[�̂�(𝒚)]2  and Δ̂𝑗
2 =

(�̂�𝑗
𝑜𝑙𝑠−�̂�𝑗

𝑖𝑣)𝑐𝑜𝑣(𝒛𝑗,𝒚)

[�̂�(𝒚)]2 , then we can now attribute the 

overall difference to differences in covariances 

and estimates. 

 

3. DESIGN 

The correlation table for the random variables 

𝒙𝟏, 𝝐, 𝒛 is given by the following: 

 

 𝒙𝟏 𝝐 𝒛 

𝒙𝟏 1 𝝆𝒙,𝝐 𝝆𝒛,𝒙 

𝝐 𝝆𝒙,𝝐 1 𝟎 

𝒛 𝝆𝒛,𝒙 𝟎 1 

 

where 𝝆𝒙,𝝐  is the correlation between 𝑥1 and  𝜖  

and 𝝆𝒛,𝒙 is the correlation between 𝑥1 and  𝒛   
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To maintain simplicity of exposition, we use a 

simple linear regression model.2 All variables are 

generated using the `drawnorm’ command, 

employing data generating processes suitable for 

linear estimation using OLS. For the base model, 

we generate independent and identically 

distributed (i.i.d) standard normal variables by 

drawing regressors, disturbance term and 

measurement errors for dependent and 

independent variables from the multivariate 

standard normal distribution. We introduced 

endogeneity by using the correlation table below.  

 

 𝝆𝒙,𝒛 

𝝆
𝒙

,𝒆
 0.7, 0.7 0.7, 0.5 0.7, 0.1 

0.5, 0.7 0.5, 0.5 0.5,0.1 

0.1, 0.7 0.1, 0.5 0.1,0.1 

 

 

We then peg the number of Monte Carlo 

replications at 2000 then investigate the 

properties of the contribution estimator using the 

following sample sizes: 100 and 100000.  

 

4. RESULTS 

We consider several cases. First, we assume that 

there is no correlation between x and 𝜖 which 

implies that OLS is consistent. Given this 

assumption, Δ̂𝑗 will be equal to 𝜃𝑗
𝑜𝑙𝑠. This may 

also mean that in large samples, the covariance 

between 𝒛 and the independent variable is close 

to zero. Second, we assume a positive correlation 

between x and 𝜖 and limit correlation values to 

three (3), namely: high (0.7), moderate (0.5) and 

low (0.1).   

 

In the base model, it is clear that the discrepancy 

is equal to the factor contribution from OLS when 

the sample size is sufficiently large. It also 

confirms that the factor contribution of IV is zero 

because 𝑐𝑜𝑣(𝒛𝑗 , 𝒚) = 0. With endogeneity, all 

factor contributions of x are upward biased.  This 

confirms the prediction of proposition 1. For a 

given correlation between x and 𝝐, the 

discrepancy in terms of factor contributions is 

monotonically decreasing with respect to the 

correlation between z and x, that is, the higher is 

the correlation, the lower is the discrepancy. In 

terms of contribution, there is no doubt that a 

                                                           
2
 We compute the factor contribution statistics 

using the `gfields.ado’ program written by S. 

Kolenikov in STATA. 

significant portion comes from the differences in 

covariance. 

 

5. CONCLUDING REMARKS 

This simple simulation study provides a way to 

assess factor contribution estimates in the 

presence of endogeneity. Results indicate that IV 

model based estimates will never be close to OLS 

estimates and OLS based factor contribution 

estimates will be upward biased if there is 

endogeneity. The study, however, focuses on the 

discrepancy between OLS and IV, with the latter 

being used to directly estimate factor 

contributions.  
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APPENDIX 

Table 1Decomposition results for N=100 

  Factor 

contributions 

 Components Components (%) Covariance 

Degree of Correlation 𝜃𝑗
𝑜𝑙𝑠 𝜃𝑗

𝑖𝑣 Δ̂𝑗 Δ̂𝑗
1 Δ̂𝑗

2 Δ̂𝑗
1 Δ̂𝑗

2 y and x y and z 

x and 𝝐 x and z          

Zero Zero 0.144 0.010 0.134 0.142 -0.008 106.165 -6.165 0.400 0.004 

High High 0.703 0.056 0.647 0.572 0.076 88.287 11.713 1.104 0.209 

High Moderate 0.703 0.033 0.670 0.633 0.037 94.467 5.533 1.104 0.111 

High Low  0.703 0.010 0.693 0.694 -0.001 100.166 -0.166 1.104 0.014 

Moderate High 0.520 0.059 0.461 0.402 0.058 87.360 12.640 0.902 0.204 

Moderate Moderate 0.520 0.034 0.485 0.458 0.027 94.365 5.635 0.902 0.108 

Moderate low  0.520 0.010 0.509 0.512 -0.003 100.638 -0.638 0.902 0.012 

Low  High 0.206 0.071 0.135 0.124 0.011 91.581 8.419 0.500 0.198 

Low  Moderate 0.206 0.041 0.165 0.163 0.002 98.746 1.254 0.500 0.103 

Low  Low  0.206 0.011 0.195 0.202 -0.007 103.694 -3.694 0.500 0.008 

 

Table 2Decomposition results for N =100000 

  Factor 

contributions 

 Components Components (%) Covariance 

Degree of Correlation 𝜃𝑗
𝑜𝑙𝑠 𝜃𝑗

𝑖𝑣 Δ̂𝑗 Δ̂𝑗
1 Δ̂𝑗

2 Δ̂𝑗
1 Δ̂𝑗

2 y and x y and z 

x and 𝝐 x and z          

Zero Zero 0.138 0.000 0.138 0.138 0.000 100.006 -0.006 0.400 0.000 

High High 0.703 0.046 0.658 0.578 0.080 87.874 12.126 1.100 0.196 

High Moderate 0.703 0.023 0.680 0.639 0.041 94.015 5.985 1.100 0.100 

High Low  0.703 0.001 0.703 0.701 0.002 99.768 0.232 1.100 0.004 

Moderate High 0.519 0.050 0.469 0.406 0.063 86.603 13.397 0.900 0.196 

Moderate Moderate 0.519 0.026 0.494 0.461 0.032 93.506 6.494 0.900 0.100 

Moderate low  0.519 0.001 0.518 0.517 0.001 99.753 0.247 0.900 0.004 

Low  High 0.202 0.063 0.138 0.123 0.016 88.586 11.414 0.500 0.196 

Low  Moderate 0.202 0.032 0.169 0.161 0.008 95.246 4.754 0.500 0.100 
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Low  Low  0.202 0.001 0.200 0.200 0.000 99.844 0.156 0.500 0.004 

 


