

Eigenvalues of Cross and Box Products of Cycles $C_{n}, n=3,4,5$ and

$$
\text { Paths } P_{m}, m=2,3,4
$$

Cresencia M. Lawas ${ }^{1}$, Vernel M. Lawas ${ }^{2}$ and April M.Yupo ${ }^{2}$
${ }^{1}$ De La Salle University Science and Technology Complex
${ }^{2}$ University of the Philippines Los Banos
*cresencia.lawas@dlsu.edu.ph

Abstract

In this study, the cross products and box products, which are two operations defined by Kilp and Knauer (2001) in their work Graph Operations and Categorical Constructions, were considered. These operations were applied to cycles $C_{n}, n=3,4,5$ and paths $P_{m}, m=2,3,4$. The adjacency matrices of the resulting graphs were constructed and eigenvalues of each graph were determined. It was shown that the eigenvalue of the cross product was the product of the eigenvalues of each graph, while the eigenvalue of the box product was the sum of the eigenvalues of each graph.

Key Words: Eigenvalues; cross product; box product; paths; cycles

1. Introduction

Any simple graph has a corresponding adjacency matrix and for each matrix, eigenvalues can be computed.

Applications of eigenvalues of a matrix abound in the fields of science and engineering. Some of them are in Control theory, vibration analysis, electric circuits, advanced dynamics, quantum mechanics, physics, statistics and even finance.

Many studies have been done involving eigenvalues of a matrix but very few studies could be found in the literature regarding cross and box products. Most studies that are related to this paper are on nullity and rank of a matrix. One study on nullity of graphs was presented by Bo Cheng and Bolian Liu in their paper entitled On the Nullity of Graphs published in the International Linear

Algebra Society last January 2007. Another study conducted as undergraduate special problem in University of the Philippines Los Banos in 2009 was entitled Graph Operations and Their Induced Autographs by Neil Jerome Egarguin.

In 2001, Kilp and Knauer, in their work Graph Operations and Categorical Constructions, defined certain operations on graphs, including the cross and box products.

This study aimed to find a relationship between the eigenvalues of the adjacency matrices of cycles and paths and the eigenvalues of the adjacency matrices of their cross products and box products. Due to time limit and the limit in the capacity of the software used to find the eigenvalues of cross and box products, paths considered were only those with 2,3 and 4 vertices while cycles considered were those with 3,4 and 5 vertices.

2. Preliminaries

A graph G consists of the vertex set $V(G)$ and edge set $E(G)$. A cycle C_{n} is a graph with vertex set $\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$. A path P_{n} is a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots ., v_{n-1} v_{n}\right\} \quad$ where the vertices $v_{1}, v_{2}, \ldots, v_{n}$ are all distinct.

Two vertices of a graph are adjacent if they are connected by an edge. A graph G, with n vertices, can be represented by its adjacency matrix $A(G)$, which is the $n x n$ symmetric matrix

$$
\left[a_{i j}\right]=\left\{\begin{array}{lc}
1 & \text { if } v_{i} \text { and } v_{j} \text { are adjacent } \\
0 & \text { if } v_{i} \text { and } v_{j} \text { are not adjacent }
\end{array}\right.
$$

as illustrated in Figure 1.

Fig. 1. The cycle C_{4} and its corresponding adjacency matrix

The cross product of graphs G and H is given by $G \times H$, where the vertex set is

$$
V(G \times H)=V(G) \times V(H)
$$

and edge set is

$$
E(G \times H)=\left\{\left[g h, g^{\prime} h^{\prime}\right] / g g^{\prime} \in E(G) \wedge h h^{\prime} \in E(H)\right\}
$$

As an illustration, consider the graphs G and H in Figure 2 and their cross product $G \times H$, which is actually $C_{3} \times C_{3}$.

Fig. 2. The cycles G and H with 3 vertices and the corresponding cross product.

On the other hand, the box product $G \square H$, has vertex set

$$
V(G \square H)=V(G) \times V(H)
$$

and edge set

$$
\begin{aligned}
E(G \square H)= & \left\{\left[g h, g^{\prime} h^{\prime}\right] /\left(g=g^{\prime} \text { if } h h^{\prime} \in E(H)\right)\right. \\
& \left.\vee\left(h=h^{\prime} \text { if } g g^{\prime} \in E(G)\right)\right\}
\end{aligned}
$$

See example of $C_{3} \square C_{4}$ in Figure 3.

Fig. 3. The cycles with 3 and 4 vertices, respectively, and the corresponding box product

The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of a graph G are the eigenvalues of its adjacency matrix $A(G)$. In 2007, Cheng and Liu were able to generate formulas for the eigenvalues of paths P_{m} and cycles C_{n}.

They derived that the eigenvalues of the adjacency matrices for paths P_{m} are given by

$$
\lambda_{r}=2 \cos \left(\frac{\pi r}{m+1}\right)
$$

where $r=1,2, \ldots, n$, while for cycles C_{n}, they were able to obtain the eigenvalues to be

$$
\lambda_{r}=2 \cos \left(\frac{2 \pi r}{n}\right)
$$

where $r=0,1,2,3, \ldots, n-1$.

3. Methodology

For the eigenvalues of cycles and paths, the formulas of Cheng and Liu were used. But for simplicity, the formula for the eigenvalues λ_{r} of C_{n} was adjusted so that $r=1,2, \ldots, n$, since the same value will be obtained when $r=0$ and when $r=n$. The formula now becomes

$$
\lambda_{r}=2 \cos \left(\frac{2 \pi r}{n}\right)
$$

where $r=1,2,3, \ldots, n$.
For the eigenvalues of the cross and box products, a software called MAGMA was used. This software generates eigenvalues as a set of ordered pairs with the eigenvalues as first components and their corresponding multiplicities as the second components.

An illustration of the computations by MAGMA can be seen in Figure 4. This shows that the eigenvalues are $0,-2$ and 2 with multiplicities 2,1 and 1 respectively.

Fig. 4. An example of a computer output for the eigenvalues of C_{4} obtained using MAGMA

Now, using the adjusted formula of Cheng and Liu, it was verified below that the same eigenvalues of C_{4} are obtained.

$$
\begin{gathered}
\lambda_{1}=2 \cos \left(\frac{2 \pi(1)}{4}\right)=2 \cos \left(\frac{\pi}{2}\right)=2(0)=0 \\
\lambda_{2}=2 \cos \left(\frac{2 \pi(2)}{4}\right)=2 \cos \left(\frac{4 \pi}{4}\right)=2 \cos (\pi)=2(-1)=-2 \\
\lambda_{3}=2 \cos \left(\frac{2 \pi(3)}{4}\right)=2 \cos \left(\frac{3 \pi}{2}\right)=2(0)=0 \\
\lambda_{4}=2 \cos \left(\frac{2 \pi(4)}{4}\right)=2 \cos (2 \pi)=2(1)=2
\end{gathered}
$$

After computing all the desired eigenvalues, some iterative formulas were obtained that could generate all the eigenvalues of the cross and box products in a certain order.

4. Results

The following are the results of this study. Take note that the operations cross product and box product were applied only to paths P_{m} (with vertices $m=2,3,4$) and cycles C_{n} (with vertices $n=3,4,5$). The method for showing these properties was by Exhaustion.

Proposition 1. Let C_{m} and C_{n} be cycles with m,n vertices, respectively. Also, let their eigenvalues be given respectively as

$$
\lambda_{i^{\prime}}=2 \cos \left(\frac{2 \pi i}{m}\right), i=1,2, \ldots, m
$$

and

$$
\lambda_{j}{ }^{\prime \prime}=2 \cos \left(\frac{2 \pi j}{n}\right), j=1,2, \ldots, n
$$

Then the eigenvalues of $C_{m} \times C_{n}$ when

Case 1. $m=n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}+j}=\left(\lambda_{i}\right)^{\prime} \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
Case 2. $m \neq n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 i+j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i=m$ and $j=n$, then

$$
\lambda_{2 i+j}=\left(\lambda_{i}^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)
$$

Sketch of Proof: The formula will be verified for $m=n=3$ (3 being the number of vertices of the smallest cycle). Using the formula of Cheng and Liu,

$$
\lambda_{i}^{\prime}=2 \cos \left(\frac{2 \pi i}{3}\right)=2 \cos \left(\frac{2 \pi j}{3}\right)=\lambda_{\mathrm{j}^{\prime \prime}}{ }^{\prime}
$$

where $i=j=1,2,3$, , we have

$$
\begin{aligned}
& \lambda_{1}^{\prime}=2 \cos \left(\frac{2 \pi}{3}\right)=-1=\lambda_{1}^{\prime \prime} \\
& \lambda_{2}^{\prime}=2 \cos \left(\frac{4 \pi}{3}\right)=-1=\lambda_{2}^{\prime \prime}
\end{aligned}
$$

and

$$
\lambda_{3}^{\prime}=2 \cos \left(\frac{6 \pi}{3}\right)=2=\lambda_{3}^{\prime \prime}
$$

Then for $i \leq j$,

$$
\begin{aligned}
& \lambda_{1} \bullet 1=\lambda_{1}=\left(\lambda_{1}{ }^{\prime}\right) \bullet\left(\lambda_{1}{ }^{\prime \prime}\right)=(-1)(-1)=1 \\
& \lambda_{1} \bullet 2=\lambda_{2}=\left(\lambda_{1}\right) \bullet\left(\lambda_{2}{ }^{\prime \prime}\right)=(-1)(-1)=1
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1} \bullet 3=\lambda_{3}=\left(\lambda_{1}{ }^{\prime}\right) \bullet\left(\lambda_{3}{ }^{\prime \prime}\right)=(-1)(2)=-2 \\
& \lambda_{2} \bullet 2=\lambda_{4}=\left(\lambda_{2}{ }^{\prime}\right) \bullet\left(\lambda_{2}{ }^{\prime \prime}\right)=(-1)(-1)=1 \\
& \lambda_{2} \bullet 3=\lambda_{6}=\left(\lambda_{2}{ }^{\prime}\right) \bullet\left(\lambda_{3}{ }^{\prime \prime}\right)=(-1)(2)=-2
\end{aligned}
$$

and

$$
\lambda_{3} \bullet 3=\lambda_{9}=\left(\lambda_{3}{ }^{\prime}\right) \bullet\left(\lambda_{3} "\right)=(2)(2)=4 .
$$

For $i>j$, with $i=2,3$ and $j=1,2$:

$$
\begin{aligned}
& \lambda_{2 \bullet 1}=\lambda_{2} \bullet 2+1=\lambda_{5}=\left(\lambda_{2}\right) \bullet\left(\lambda_{1}{ }^{\prime \prime}\right)=(-1)(-1)=1 \\
& \lambda_{3 \bullet 1}=\lambda_{2} \cdot 3+1=\lambda_{7}=\left(\lambda_{3}{ }^{\prime}\right) \bullet\left(\lambda_{1}{ }^{\prime \prime}\right)=(2)(-1)=-2
\end{aligned}
$$

and

$$
\lambda_{3 \bullet 2}=\lambda_{2} \bullet 3+2=\lambda_{8}=\left(\lambda_{3}{ }^{\prime}\right) \bullet\left(\lambda_{2}^{\prime \prime}\right)=(2)(-1)=-2
$$

Thus, the eigenvalues of $C_{3} \times C_{3}$ are

$$
\lambda_{C_{3}} \times C_{3}=1,1,-2,1,1,-2,-2,-2,4
$$

These show that for the formula holds for $m=n=3$

Fig. 5. The computed set of eigenvalues for $C_{3} \times C_{3}$ using MAGMA

The formula can be verified to hold also for $C_{3} \times C_{4}, C_{3} \times C_{5}, C_{4} \times C_{4}$, and $C_{5} \times C_{5}$.

The rest of the Propositions can be derived in a similar manner.

Proposition 2. Let P_{m} and P_{n} be paths with m, n vertices, respectively. Also, let their eigenvalues be given respectively as

and

$$
\lambda_{j}{ }^{\prime \prime}=2 \cos \left(\frac{\pi j}{n+1}\right), j=1,2, \ldots, n
$$

Then the eigenvalues of $P_{m} \times P_{n}$ when

Case 1. $m=n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
Case 2. $m \neq n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i=m$ and $j=n$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}\right)^{\prime} \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.

Proposition 3. Let C_{m} and P_{n} be cycles and paths with m, n vertices, respectively . Also, let their eigenvalues be given respectively as

$$
\lambda_{i}^{\prime}=2 \cos \left(\frac{2 \pi i}{m}\right), i=1,2, \ldots, m
$$

and

$$
\lambda_{j}{ }^{\prime \prime}=2 \cos \left(\frac{\pi j}{n+1}\right), j=1,2, \ldots, n
$$

Then the eigenvalues of $C_{m} \times P_{n}$ when

Case 1. $m=n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
Case 2. $m \neq n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i=m$ and $j=n$, then $\lambda_{2 i-j}=\left(\lambda_{i}{ }^{\prime}\right) \bullet\left(\lambda_{j}{ }^{\prime \prime}\right)$.

Proposition 4. Let C_{m} and C_{n} be cycles with m,n vertices, respectively. Also, let their eigenvalues be given respectively as

$$
\lambda_{i}^{\prime}=2 \cos \left(\frac{2 \pi i}{m}\right), i=1,2, \ldots, m
$$

and

Presented at the DLSU Research Congress 2015
De La Salle University, Manila, Philippines
March 2-4, 2015

$$
\lambda_{j}^{\prime \prime}=2 \cos \left(\frac{2 \pi j}{n}\right), j=1,2, \ldots, n
$$

Then the eigenvalues of $C_{m} \square C_{n}$ when

Case 1. $m=n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 i+j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
Case 2. $m \neq n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}+j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i=m$ and $j=n$, then $\lambda_{2 \mathrm{i}+j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.

Proposition 5. Let P_{m} and P_{n} be cycles with m, n vertices, respectively. Also, let their eigenvalues be given respectively as

$$
\lambda_{i}^{\prime}=2 \cos \left(\frac{\pi i}{m+1}\right), i=1,2, \ldots, m
$$

and

$$
\lambda_{j}^{\prime \prime}=2 \cos \left(\frac{\pi j}{n+1}\right), j=1,2, \ldots, n
$$

Then the eigenvalues of $P_{m} \square \mathrm{P}_{n}$ when

Case 1. $m=n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
Case 2. $m \neq n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i=m$ and $j=n$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.

Proposition 6. Let C_{m} and P_{n} be cycles with m, n vertices, respectively. Also, let their eigenvalues be given respectively as

$$
\lambda_{i}^{\prime}=2 \cos \left(\frac{2 \pi i}{m}\right), i=1,2, \ldots, m
$$

and

$$
\lambda_{j}^{\prime \prime}=2 \cos \left(\frac{\pi j}{n+1}\right), j=1,2, \ldots, n
$$

Then the eigenvalues of $C_{m} \square P_{n}$ when

Case 1. $m=n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
Case 2. $m \neq n$
If $i \leq j$, then $\lambda_{i j}=\left(\lambda_{i}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.
If $i>j$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}\right)+\left(\lambda_{j} "\right)$.
If $i=m$ and $j=n$, then $\lambda_{2 \mathrm{i}-j}=\left(\lambda_{i}{ }^{\prime}\right)+\left(\lambda_{j}{ }^{\prime \prime}\right)$.

5. Summary and Recommendations

To summarize, it was observed that whether one operates on two cycles, two paths, or a cycle and a path, the eigenvalue of the cross product of the two graphs was the product of the eigenvalues of each graph, while the eigenvalue of the box product of the two graphs was the sum of the eigenvalues of each graph.

In addition, iterative formulas or counters were obtained that could generate all the eigenvalues of the cross and box products in a certain order.

Since this paper is limited in terms of the number of vertices of paths and cycles, a possible study in the future would be to look at box and cross products of paths and cycles with higher order and verify if the same properties and iterative formulas constructed by the authors will still hold.

6. Acknowledgments

I would like to thank my husband, Prof. Vernel M. Lawas for pushing me to do this paper and for tirelessly helping me with the formatting and editing. Also, I acknowledge the effort of Ms. April Yupo for patiently computing all the eigenvalues of the graphs using Magma. Lastly, I want to thank my daughter Cresel M. Lawas for helping me create and format all the graphs and figures.

7. References

Applications of Eigenvalues and Eigenvectors (n.d.) Retrieved on January 23, 2015 from http://www.personal.soton.ac.uk/jav/soton/ HELM/workbooks/workbook_22/22_2_apps eigen_vals_vecs.pdf

Cheng, B. and Liu, B. (2007). On The Nullity of Graphs. Electronic Journal of Linear Algebra, pp. 60-67.

Egarguin, N.J.A. (2009). Graph Operations and Their Induced Autographs. Unpublished Undergraduate Special Problem, IMSPUPLB.

Kilp, M. and U. Knauer. (2001). Graph Operations and Categorical Constructions. Acta Comment, Univ. Tartuensis, Math vol 5, pp. 43-57.

Kolman, B. and H. David. (1993). Introductory Linear algebra With Applications. Harper Collins Colege Publishers.

Programs:

MAGMA (Registered) v.2.10, (2003).

Scientific Workplace (Copyright) 5.5 Build 2953, (2005).

