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Abstract: In the building sector which has been Portland cement (OPC)-based for the past century,
geopolymers have emerged to have the potential to become the new norm. Its technical properties
have been shown to be comparable if not better and its production results in as much as 80%
reduction in CO:z emissions compared to OPC. Moreover, sustainability is accessible since
geopolymers, synthesized via alkali activation of amorphous alumino-silicate materials, can be
formed from alumina- and silica- rich industrial and agro-industrial wastes such as coal ash and rice
hull ash.

Synthesis of geopolymers are determined by three sets of factors: raw materials used (type, mineral
composition, mix ratio, particle size, etc.), alkali activator (type, mix proportion, pH, liquid-to-solid
ratio, etc.), and synthesis and curing conditions (curing time, curing temperature, applied pressure,
etc.). These set of factors have to be identified for optimum properties of the geopolymers formed. As
raw materials compositions are inherently variable, the effect of each factor cannot be taken
absolutely.

In this study, the raw material mix ratio is set as 1:1:1 mass ratio of coal fly ash (CFA), coal bottom
ash (CBA), and rice hull ash (RHA) and the curing time at 28 days. The order of significance of the
effects of (1) NaOH/water glass ratio as alkali activator, (2) liquid-to-solid ratio, (3) curing
temperature, and (4) particle size of bottom ash on the compressive strength and volumetric weight
of the geopolymers formed will be determined The Definitive Screening Design (DSD), a new, robust
screening design that allows for three level tests at only 2m+1 runs (.e. m = 4, 9 runs), will be used
as the design of experiments.
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1. INTRODUCTION

Optimized geopolymer production using
different precursor materials have been able to
produce alternative binders that are of comparable
strength if not better, lighter, and with better fire
and high temperature performance than OPC
(Davidovits, 1994).

These present the prospect of geopolymer
technology in replacing OPC as the binder of choice
in the construction industry.

In this study, this prospect is considered
by investigating the potential of using coal ash and

1.1 Overview

The production and use of geopolymers as
an alternative binder to ordinary Portland cement
(OPC) consume much less energy and generates as
much as 80% less greenhouse gas emissions
(Davidovits, 1991; Barbosa et al., 2000). And its
development from industrial waste materials such
as blast furnace slag and coal ashes increases its
potential for sustainability.
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rice hull ash mixtures as raw materials for
geopolymer production. Coal ashes (fly ash and
bottom ash) and rice hulls are among the top agro-
industrial by-products that are generally disposed
of in landfills. The fly ash and bottom ash, mostly
from coal fired power plants, have high alumina
and silica content (Li and Xu, 2009). And the rice
hull ash, from local biomass-fired power plants, is a
rich source of amorphous silica (Siddique and Igbal
Khan, 2011).

1.2 Geopolymer Formation

Geopolymers are inorganic polymers
formed from the alkaline activation of amorphous
alumino-silicate materials resulting in a three-
dimensional polymeric network. The products
formed are the synthetic equivalent of natural
rocks thus the term “geopolymer” (geo — meaning
earth). As rock-like materials, they also possess
properties similar to rocks such as hardness,
chemical stability and longevity (Davidovits, 1994;
Kumar et al., 2007).

The quality of the geopolymer formed
depends on three sets of factors: the precursor
materials used (type, mineral composition, mix
ratio, particle size, etc.), the alkali activator used
(type, mix proportion, pH, liquid-to-solid ratio, etc.),
and synthesis and curing conditions (curing time,
curing temperature, applied pressure, etc.). These
set of factors have to be identified for optimum
properties of the geopolymers formed. However, as
the precursor materials compositions are
inherently variable, the effect of each factor cannot
be taken absolutely.

The precursor alumino-silicate materials
can be divided into two main groups: (1) calcined
materials, such as fly ash, metakaolinite, slag,
construction residues, pozzolanic wastes, etc., and
(2) non-calcined materials, for instance, kaolinite,
feldspars, rock-type aluminosilicate minerals, mine
tailings, etc.(Xu & van Deventer, 2003).

Of the common alkali activators, such as
NaOH, Na2S04, waterglass, Na2:COs, K2COs, KOH,
and Ka2SO4, the most utilized for geopolymer
synthesis are a mixture of sodium or potassium
hydroxides (NaOH, KOH) and sodium waterglass
(nSi02-Na20) or potassium waterglass (nSiO2-K20)
(Pacheco-Torgal et al., 2007).

1.3 Factor Screening

Because of the many factors needed to be
considered, testing a new formulation (precursor
material mix) may involve a significant number of
experimental/test runs. Thus it is imperative that
the number of factors considered be as small as
possible.

In this study, a ternary mix of coal fly ash
(CFA), coal bottom ash (CBA), and rice hull ash
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(RHA) is considered. Samples of these materials
are shown in Figure 1. The proportion of the 3
materials, using a mixture design model, are three
factors already. A fourth factor considered in the
model is curing time.

Fig. 1. Precursor materials used in the ternary mix
geopolymer.

For a manageable experimental design,
other factors are set on a fixed value but these
values need also be identified.

In this study, four additional factors are
considered for significance:

X1 = NaOH-water glass ratio (alkali

activator)
X2 = liquid-solid ratio
X3 = curing temperature
X4 = particle size of CBA

The evaluation of the order significance of
these four factors on the geopolymer formed is
evaluated using the Definitive Screening Design
(DSD) run on the JMP software.

DSD is a small, robust screening design
that allows for three level tests with only 2m + 1
runs (m = number of factors). Thus for m = 4
factors, at 3 levels each, only nine runs are needed.
In this screening design, the main effects are not
biased by any second-order effect and all quadratic
effects can be quantified. Figure 2 shows the color
map of the factor correlations for a 4-factor DSD.
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Fig. 2. Color Map on Correlations for 4 factor DSD
(From JMP software)

For four factors, Table 1 shows the 9 runs
of the Definitive Screening Design with three levels

-1, 0, and +1 for each factor.

Table 1. Definitive screening design for 4 factors

RUN X1 X2 X3 X4
1 0 1 1 1
2 0 -1 -1 -1
3 1 0 1 -1
4 1 0 -1 1
5 1 -1 0 1
6 1 1 0 -1
7 1 1 1 0
8 1 1 1 0
9 0 0 0 0

2. METHODOLOGY

The definitive screening design (DSD) is
used to determine the significance of four input
factors:

X1 NaOH/water glass ratio

X2 liquid-to-solid ratio

X3 curing temperature

X4 particle size (of coal bottom ash)
on two response variables:

Sc compressive strength and

Y volumetric weight

of the geopolymers formed from a 1:1:1 mass ratio
of coal fly ash (CFA), coal bottom ash (CBA) and
rice hull ash (RHA).

Table 2 shows the 3 levels used for each
factor in the DSD.
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Table 2. Levels used for each factor in DSD

Factor -1 0 +1

X1 Pure WG 50-50 75-25
X2 50% 60% 70%
X3 40°C 60°C 80°C
X4 Very fine Fine Coarse

In the formation of the geopolymer
specimens, all coal ash used come from the same
source and batch and the same is true for the rice
hull ash. Cubical specimens (50mm x 50mm x
50mm) are formed using the factor levels shown in
Table 2. The specimens remain in the molds for 24
hours, then de-molded and placed in an oven for
another 24 hours, and then allowed to cure at
ambient temperature for a total of 28 days. The
process of specimen formation is shown in Figure 3.

3. RESULTS AND DISCUSSION

Table 3 shows the results of the material
testing on the geopolymer specimens.

R Drying
el Grinding M
> Abde > X prep
Matenals Slevmg
Liquid . Place
Sotnprep P Akai | | SoHia [ | "R 1S De-
Solution L) 24 hrs Moulding
= Temp
uring ;i
28 days | Application
ambient 40c, 60c, 80c
24 hrs

Fig. 3. Flow diagram of geopolymer specimen
production

Table 3. Measured responses for each test run

RUN [ X1 [ X2 [ X3 [ X4 [S.,MPa [y, kg/m’
1 0 +1 [ +1 | -1 2.027 1130
2 0 -1 | -1 |+1 4.712 1365
3 +1 |0 -1 | -1 3.203 1226
4 -1 10 +1 | +1 2.973 1274
5 +1 [ +1 | O +1 2.531 1237
6 -1 ]|-11]0 -1 Br 1263
7 +1 |-1 [ +1 | O 4.718 1361
8 -1 |+1|-11]0 1.260 1085
9 0 0 0 0 2.698 1221

Note: Br - broken specimen

Using the data in Table 3, Figure 4 shows
the results of the screening for compressive
strength. In this figure, it can be seen that the
order of significance of the factors contributing to
compressive strength is: liquid-solid ratio, NaOH-
waterglass ratio, CBA particle size, curing
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temperature with curing temperature having the
least effect.
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Fig. 4. Results of screening for compressive
strength.

Using generalized regression model for
compressive strength, the parameter estimates are
shown in Figure 5.

= Definitive Screening Design_DSD2 - Generalized Regression - Jm_

4~ Generalized Regression
P Model Launch
4= Elastic Net with BIC Validation

4 Model Summary
Response C_strength
Distribution Normal
Estimation Method Elastic Met
Validatien Method BIC
Mean Medel Link  Identity
Scale Medel Link  Identity

Measure Training
Number of rows 9 L
Sum of Frequencies 8 r
-Loglikelihood ~ -18.28328
BIC -19.93103
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lig-sol ratio™curing_temp 0 0 0 0 0
lig-sol ratio"BA_size 0 0 0 0 0
NaOH-WG ratio*curing temp 0 0 0 0 0
NaOQH-WG ratio*BA_size 0 0 0 0 0
curing temp*BA size 0 0 0 i i
Scale 0.0246162 0 : 00246162 010246162
4 Parameter Estimates for Original Predictors
28 Ov

Fig. 5. Parameter estimates for compressive
strength using generalized regression
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Thus the compressive strength regression
model is:

S, =3.01525 + 0.7177589.X, — 2.851176 X, + 0.1916633.X
+0.2640272.X ,1+0.3603425 X2 + 0.4959038 X 2

— (R b}
[ B i

— Cstrengh . B4 s
[ ——

\_/

Fig. 5. Individual correlation of factors on the
compressive strength (clockwise from top
left: vs NaOH-WG, liquid-solid, BA size,
curing temperature)

Comparing with the individual correlation
of each factor, as seen from Figure 5, the
compressive strength regression model captures the
non-linear effects of X2 (liquid-solid ratio) and X4
(CBA particle size). Figure 5 also shows that except
for X2 (liquid-solid ratio), increase in the other
factor levels also increases the response
(compressive strength).

Figure 6 shows the results of the screening
for volumetric weight. In this figure, the order of
significance of the factors contributing to
volumetric weight is: liquid-solid ratio, CBA
particle size, NaOH-waterglass ratio, curing
temperature with curing temperature also having
the least effect.
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Fig. 6. Results of screening for volumetric weight

Using generalized regression model for
volumetric weight, the parameter estimates are
shown in Figure 7.

Thus, the volumetric weight regression
model is:

7 =1240.2222 + 80.273861X, — 217.037X, + 34.141805X
+102.72752X +1.1075383 X% + 85.755771X 2

Comparing with the individual correlation
of each factor, as seen from Figure 8, the volumetric
weight regression model captures the non-linear
effects of X1 (NaOH-waterglass ratio) and X4 (CBA
particle size). Figure 8 also shows that except for
X2 (liquid-solid ratio), increase in the other factor
levels also increases the response (compressive
strength).
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Figure 7. Parameter estimates for volumetric
weight using generalized regression

Vol wt v NoOH-WG rtl Vet v bsel o '
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Fig. 8. Individual correlation of factors on the
volumetric weight (clockwise from top left: vs
NaOH-WG, liquid-solid, BA size, curing
temperature)

4. CONCLUSIONS

The screening shows that curing
temperature has the least effect on compressive
strength and volumetric weight thus this factor
may be excluded from the model.
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Thus, the regression equations may be
represented as:

S, =3.01525+0.7177589.X; —2.851176 X,
+0.2640272.X £+0.3603425 X7 +0.4959038 X 2

and

7 =1240.2222 + 80.273861X, —217.037.X,
+102.72752.X (+1.1075383 X2 + 35.755771X 2

The screening has also shown that for
compressive strength, the liquid-solid ratio followed
by the NaOH-waterglass ratio are the most
significant factors while for volumetric weight, the
liquid-solid ratio followed by the BA size are the
most significant factors.
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