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Carbon capture and storage (CCS) is considered as one of the leading options 

in mitigating carbon dioxide emissions into the atmosphere. It involves collecting and 

compressing of relatively pure carbon dioxide from a given source, then storing it into 

a various locations or also called sinks. Multiple variables limits the implementation 

of CCS such as injection rate limit of sink, capacity of sink, start and end of operating 

life of source and sink, and other socio-economical aspects that the CCS retrofit will 

do to the existing carbon source facility. The proposed approach focuses on temporal 

issues where operating lives of sources and sink may not completely coincide. In 

2012, Tan et al. developed an optimization model for optimal source sink matching in 

carbon capture and storage systems with time, injection rate, and capacity 

constraints. This paper improves the existing optimization model by eliminating 

inconsistencies in the optimization results. Previous case studies presented by Tan, 

et al. were re-evaluated and a new case study was added to further show 

improvement made by the modified model. The new model provides more accurate 

and robust results compared to the original model and eliminates inconsistencies 

that required human intervention in order to extract the correct conclusion. It also 

simplified the model, requiring lesser variables and solver iterations, and making it 

more suited for large scale set up optimization. 

Keywords: Carbon capture and storage, source–sink matching, mixed integer linear 

programming 

 

1. INTRODUCTION 
 
In 2012, Tan et al.(1) developed an optimization model 

for optimal source sink matching in carbon capture 

and storage systems with time, injection rate, and 

capacity constraints. This paper aims to improve the 

existing optimization model and eliminate 

inconsistencies in the optimization results.  

The summarized optimization model by Tan et al. is 

as follows (eq. 1 ~ 11): 

 

max ∑ ∑ ∑ Qiksijkijk   (1) 

bijkSi
L ≤ sijk ≤ bijkSi

U  ∀𝑖, 𝑗, 𝑘 (2) 

bijk ∈ {0,1}     ∀𝑖, 𝑗, 𝑘   (3) 

bijk ≤ bij(k+1)  ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾 (4) 

sijk ≤ sij(k+1)   ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾  (5) 

sij(k+1) − sijk ≤ (bij(k+1) − bijk)Si
U 

 ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾  (6) 

bijT
L ≤ ∑ Qikbijkk ≤ bijT

U  ∀𝑖, 𝑗   (7) 

bij ∈ {0,1}   ∀𝑖, 𝑗    (8) 
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∑ bijj ≤ 1  ∀𝑖    (9) 

∑ ∑ sijkij Qik ≤ Dj  ∀𝑗  (10) 

∑ sijkQiki ≤ Ejk  ∀𝑗, 𝑘  (11) 

In the model by Tan et al., three decision variables 

were utilized namely 𝑏𝑖𝑗, 𝑏𝑖𝑗𝑘 and 𝑠𝑖𝑗𝑘. These variables 

dictate where the connection, 𝑏, will be from source 𝑖 
to sink 𝑗, on what period 𝑘 they will connect, and 

what will be the allowed maximum CO2 rate, 𝑠, will 

be obtained from the source. These variables are 

correlated by the following constraints: 

bijkSi
L ≤ sijk ≤ bijkSi

U  ∀i, j, k (2) 

sijk ≤ sij(k+1)   ∀i, j   ∀k, k + 1 ∈ K    (5) 

sij(k+1) − sijk ≤ (bij(k+1) − bijk)Si
U 

 ∀i, j   ∀k, k + 1 ∈ K    (6) 
bijT

L ≤ ∑ Qikbijkk ≤ bijT
U  ∀i, j   (7) 

 

Equation 2 limits 𝑠𝑖𝑗𝑘 so that it will only have a value 

between 𝑆𝑖𝐿 and 𝑆𝑖𝑈 while the multiplier 𝑏𝑖𝑗𝑘 ensures 

that there will only be a flow rate when a connection 

is present between source and sink. Equations 6 and 

5 combined limit the value of 𝑠𝑖𝑗𝑘 such that it will 

retain a common value for the whole connection 

period between source and sink. Equation 7 ensures 

that sum of the periods where an active connection 

between source 𝑖 to sink 𝑗 for periods 𝑘 (𝛴𝑘𝑄𝑖𝑘𝑏𝑖𝑗𝑘) is 

within the minimum 𝑇𝐿 and maximum 𝑇𝑈 viable 

period considered for connection between source 𝑖 to 

sink 𝑗 to be established (𝑏𝑖𝑗=1).   

Decision variables 𝑏𝑖𝑗 and 𝑏𝑖𝑗𝑘 both represent a 

connection between source 𝑖 to sink 𝑗 with the latter 

having an additional dimension which is the specific 

period, 𝑘 (every 5 years). It is therefore expected that 

the conclusions obtained from these variables must 

be consistent. 

2. METHODOLOGY 

CASE STUDY 1 

Using Case Study 1 presented by Tan et al., the 

results were reproduced using Lingo v.14 platform(2). 

The parameters and results are as follows: 

Table 1: Case Study 1 Parameters (From Tan et al.) 

Sources Flow Rate 

(Mt/y) 

Time of 

Flow (y) 

Maximum 

Capture (Mt) 

1 10 0-20 200 

2 2.5 0-30 75 

3 4 0-30 120 

4 4 0-25 100 

5 6 10-30 120 

Total 26.5 n/a 615 

Sinks Injection 

Limit (Mt/y) 

Start  

Time (y) 

Maximum 

Storage (Mt) 

A 10 0 400 

B 10 5 500 

Total 20 n/a 900 

 

Table 2: Case Study 1 Results (From Tan et al.) 
Source Sink A Sink B Source Summary 

1 10 Mt/y  

(t=0 to 20) 

0 200 Mt (100%)  

 

2 0 0 0 Mt (0%)  

3 0 4 Mt/y   

(t=5 to 30) 

100 Mt (83%)  

4 0 0 0 Mt (0%)  

5 0 6 Mt/y  

(t=10 to 30) 

120 Mt (100%)  

Sink Summary 

 200 Mt (50%)  220 Mt (44%)  420 Mt of CO2  

 

Table 3: Case Study 1 𝑏𝑖𝑗 Variable Results (Original Optimization Model Raw Results) 

  j(1)  j(2)  

i (1)  1 0 

i (2) 0 0 

i (3) 0 1 

i (4) 0 0 

i (5) 0 1 

 

Table 4: Case Study 1 𝑏𝑖𝑗𝑘 Variable Results (Original Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

 k(1)  k(2) k(3) k(4) k(5) k(6) k(1)  k(2) k(3) k(4) k(5) k(6) 

i (1)  1 1 1 1 1 1 0 0 0 0 0 1 

i (2) 0 0 0 0 0 0 0 0 0 0 0 0 

i (3) 0 0 0 0 0 0 0 1 1 1 1 1 

i (4) 0 0 0 0 0 1 0 0 0 0 0 1 

i (5) 0 0 0 0 0 0 0 0 1 1 1 1 
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Table 5: Case Study 1 𝑠𝑖𝑗𝑘 Variable Results (Original Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

j=1 k(1)  k(2) k(3) k(4) k(5) k(6) k(1)  k(2) k(3) k(4) k(5) k(6) 

i (1)  10 10 10 10 10 10 0 0 0 0 0 10 

i (2) 0 0 0 0 0 0 0 0 0 0 0 0 

i (3) 0 0 0 0 0 0 0 4 4 4 4 4 

i (4) 0 0 0 0 0 4 0 0 0 0 0 4 

i (5) 0 0 0 0 0 0 0 0 6 6 6 6 

𝛴i𝑠𝑖𝑗𝑘 10 10 10 10 10 14 0 4 10 10 10 24 

𝛴i𝑠𝑖𝑗𝑘𝑄𝑖𝑘 10 10 10 10 0 0 0 4 10 10 10 10 

 

We can observe that only the variable 𝑏𝑖𝑗 was 

consistent with the optimization results presented by 

Tan et al. Although manual selection of values from 

the results can be done and the same optimized 

results can be obtained, such task is prone to human 

error and shows weakness in the optimization model 

since it cannot, by itself, provide the optimized 

solution to the problem. 

MODIFICATIONS OF THE 

OPTIMIZATION MODEL 

The optimization model results show multiple 

inconsistencies between 𝑏𝑖𝑗𝑘 and 𝑏𝑖𝑗 for Sources 1 and 

4. It also violated restrictions set upon by equations 7 

and 9 where a connection should only exist from one 

source to a sink with a minimum viable period of 

operation. This inconsistency was due to the lack of 

restriction on variable 𝑏𝑖𝑗𝑘. This can be traced back to 

equation 7 and 9.   

bijT
L ≤ ∑ Qikbijkk ≤ bijT

U  ∀i, j   (7)  

∑ bijj ≤ 1  ∀i    (9) 

 
The restriction in equation 7 has a loophole where 

when the value of 𝑏𝑖𝑗 and 𝑄𝑖𝑘 happens to be both zero 

(0), 𝑏𝑖𝑗𝑘 variables after last period of 𝑄𝑖𝑘=1 can obtain 

a value of 1 or 0 without violating any constraints. 

Equation 9 is also rendered useless in restraining the 

values of 𝑏𝑖𝑗𝑘 due to the loophole in equation 7. This is 

what happened in Case study 1 where the last period 

of Source 1 and Source 4 obtained a value of 1. This 

loophole can be neutralized by modifying equation 7 

and 9 to 7’ and 9’. 

bijk(Last)
TL ≤ ∑ Qikbijkk ≤ bijk(Last)

TU  ∀i, j   (7’) 

∑ bijk(Last)j ≤ 1  ∀i    (9’) 

The variable 𝑏𝑖𝑗 is eliminated from the model and 

replaced by 𝑏𝑖𝑗k(Last). The variable 𝑏𝑖𝑗 in equation 7 and 

9 was used as a representative for the connection 

between source 𝑖 to sink 𝑗. The variable 𝑏𝑖𝑗k(Last) can 

also be used as a representative since it is assumed 

that the connection between source 𝑖 to sink 𝑗 will be 

retained up to the end of the planning horizon (last 

period 𝑘). This is reinforced by equation 4. By this 

modification, even if 𝑄𝑖𝑘 and 𝑏𝑖𝑗k are zero (0), 𝑏𝑖𝑗𝑘 will 

be forced to take a zero value since equation 4 will 

force all 𝑏𝑖𝑗𝑘 before (Last) to also be zero (0). 

bijk ≤ bij(k+1)  ∀i, j   ∀k, k + 1 ∈ K (4) 

 
The current constraints for the variable 𝑠𝑖𝑗𝑘 allow it to 

have a positive value even if the source no longer 

provides CO2 to the sink. This was allowed since 𝑠𝑖𝑗𝑘 

variable is multiplied by 𝑄𝑖𝑘 which zeroes out the 

value when the source stops operating in equations 1, 

10, and 11. This result to 𝑠𝑖𝑗𝑘 values that are 

inconsistent with the final conclusion obtained from 

the optimization model. This is reflected in source 1 

where 𝑠𝑖𝑗𝑘 retains a value of 10 for periods 𝑘=5 and 

𝑘=6 even if it is no longer operational. This 

inconsistency is eliminated by reformulating how 𝑠𝑖𝑗𝑘 

is constrained in the model. Refer to the following: 

bijkSi
L ≤ sijk ≤ bijkSi

U  ∀i, j, k (2) 

bijkQikSi
L ≤ sijk ≤ bijkQikSi

U  ∀i, j, k (2’) 

 
Equation 2 restricts 𝑠𝑖𝑗𝑘 to have a value between 𝑆𝑖𝐿 

and 𝑆𝑖𝑈 while the factor 𝑏𝑖𝑗𝑘 dictates where it will be a 

positive or a zero value. The proposed equation 2’ 

reinforces the restriction by including the factor 𝑄𝑖𝑘. 

This will force the variable 𝑠𝑖𝑗𝑘 to have a positive 

value only during the time source 𝑖 is operational. 

This will contradict with the existing equation 5 

where it forces 𝑠𝑖𝑗𝑘 to keep its positive value up to the 

end of the planning horizon. It is therefore necessary 

to modify this equation to equation 5’ in order to 

allow 𝑠𝑖𝑗𝑘 to have a zero value once source 𝑖 stops 

operating before the end of the planning horizon.  

sijk ≤ sij(k+1)  ∀i, j   ∀k, k + 1 ∈ K    (5) 

sijk ∗ Qi(k+1) ≤ sij(k+1)  ∀i, j   ∀k, k + 1 ∈ K    (5’) 



 

SEE-III-026     4  
 Proceedings of the DLSU Research Congress Vol. 3 2015 

   Presented at the DLSU Research Congress 2015 

De La Salle University, Manila, Philippines 

March 2-4, 2015 

 

sij(k+1) − sijk ≤ (bij(k+1) − bijk)Si
U 

 ∀i, j   ∀k, k + 1 ∈ K    (6) 

Another effect of equation 2’ is the simplification of 

equations 1, 10, and 11 since the factor 𝑄𝑖𝑘 will no 

longer be necessary. This results to equations 1’, 10’, 

and 11’.  
 

max ∑ ∑ ∑ sijkijk    (1’) 

∑ ∑ sijkij ≤ Dj  ∀j  (10’) 

∑ sijki ≤ Ejk  ∀j, k  (11’) 

 
A comparison table of the original optimization 

model and the modified optimization model can be 

seen in table 6. Both the original model and the 

modified model are calculated as a Mixed Integer 

Linear Program (MILP). 

Table 6: Optimization Model Comparison Summary 

Original Model from Tan et al. Modified Model 

MILP  

 

max ∑ ∑ ∑ 𝑄𝑖𝑘𝑠𝑖𝑗𝑘𝑖𝑗𝑘   (1) 

𝑏𝑖𝑗𝑘𝑆𝑖
𝐿 ≤ 𝑠𝑖𝑗𝑘 ≤ 𝑏𝑖𝑗𝑘𝑆𝑖

𝑈       ∀𝑖, 𝑗, 𝑘    (2) 

𝑏𝑖𝑗𝑘 ∈ {0,1}     ∀𝑖, 𝑗, 𝑘    (3) 

𝑏𝑖𝑗𝑘 ≤ 𝑏𝑖𝑗(𝑘+1)     ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾    (4) 

𝑠𝑖𝑗𝑘 ≤ 𝑠𝑖𝑗(𝑘+1)   ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾    (5) 

𝑠𝑖𝑗(𝑘+1) − 𝑠𝑖𝑗𝑘 ≤ (𝑏𝑖𝑗(𝑘+1) − 𝑏𝑖𝑗𝑘)𝑆𝑖
𝑈   ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾    (6) 

𝑏𝑖𝑗𝑇𝐿 ≤ ∑ 𝑄𝑖𝑘𝑏𝑖𝑗𝑘𝑘 ≤ 𝑏𝑖𝑗𝑇𝑈    ∀𝑖, 𝑗    (7) 

𝑏𝑖𝑗 ∈ {0,1}    ∀𝑖, 𝑗 (8) 

∑ 𝑏𝑖𝑗𝑗 ≤ 1    ∀𝑖 (9) 

∑ ∑ 𝑠𝑖𝑗𝑘𝑖𝑗 𝑄𝑖𝑘 ≤ 𝐷𝑗    ∀𝑗  (10) 

∑ 𝑠𝑖𝑗𝑘𝑄𝑖𝑘𝑖 ≤ 𝐸𝑗𝑘     ∀𝑗, 𝑘 (11) 

 

MILP  

 

max ∑ ∑ ∑ 𝑠𝑖𝑗𝑘𝑖𝑗𝑘   (1’) 

𝑏𝑖𝑗𝑘𝑄𝑖𝑘𝑆𝑖
𝐿 ≤ 𝑠𝑖𝑗𝑘 ≤ 𝑏𝑖𝑗𝑘𝑄𝑖𝑘𝑆𝑖

𝑈  ∀𝑖, 𝑗, 𝑘     (2’) 

𝑏𝑖𝑗𝑘 ∈ {0,1}   ∀𝑖, 𝑗, 𝑘    (3) 

𝑏𝑖𝑗𝑘 ≤ 𝑏𝑖𝑗(𝑘+1)   ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾    (4) 

𝑠𝑖𝑗𝑘𝑄𝑖(𝑘+1) ≤ 𝑠𝑖𝑗(𝑘+1)   ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾    (5’) 

𝑠𝑖𝑗(𝑘+1) − 𝑠𝑖𝑗𝑘 ≤ (𝑏𝑖𝑗(𝑘+1) − 𝑏𝑖𝑗𝑘)𝑆𝑖
𝑈 ∀𝑖, 𝑗   ∀𝑘, 𝑘 + 1 ∈ 𝐾    (6) 

𝑏𝑖𝑗𝑘𝐿𝐴𝑆𝑇
𝑇𝐿 ≤ ∑ 𝑄𝑖𝑘𝑏𝑖𝑗𝑘𝑘 ≤ 𝑏𝑖𝑗𝑘𝐿𝐴𝑆𝑇

𝑇𝑈 ∀𝑖, 𝑗    (7’) 

(𝑑𝑒𝑙𝑒𝑡𝑒𝑑)  (𝑑𝑒𝑙𝑒𝑡𝑒𝑑) (8) 

∑ 𝑏𝑖𝑗𝑘𝐿𝐴𝑆𝑇𝑗 ≤ 1  ∀𝑖    (9’) 

∑ ∑ 𝑠𝑖𝑗𝑘𝑖𝑗 ≤ 𝐷𝑗  ∀𝑗  (10’) 

∑ 𝑠𝑖𝑗𝑘𝑖 ≤ 𝐸𝑗𝑘  ∀𝑗, 𝑘  (11’) 

 

 

Presented in Tables 7 and 8 are the results of Case Study 1 using the Modified Optimization Model. 

Table 7: Case Study 1 𝑏𝑖𝑗𝑘 Variable Results (Modified Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

 k(1)  k(2) k(3) k(4) k(5) k(6) k(1)  k(2) k(3) k(4) k(5) k(6) 

i (1)  1 1 1 1 1 1 0 0 0 0 0 0 

i (2) 0 0 0 0 0 0 0 0 0 0 0 0 

i (3) 0 0 0 0 0 0 0 1 1 1 1 1 

i (4) 0 0 0 0 0 0 0 0 0 0 0 0 

i (5) 0 0 0 0 0 0 0 0 1 1 1 1 

Table 8: Case Study 1 𝑠𝑖𝑗𝑘 Variable Results (Modified Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

j=1 k(1)  k(2) k(3) k(4) k(5) k(6) k(1)  k(2) k(3) k(4) k(5) k(6) 

i (1)  10 10 10 10 0 0 0 0 0 0 0 0 

i (2) 0 0 0 0 0 0 0 0 0 0 0 0 

i (3) 0 0 0 0 0 0 0 4 4 4 4 4 

i (4) 0 0 0 0 0 0 0 0 0 0 0 0 

i (5) 0 0 0 0 0 0 0 0 6 6 6 6 

𝛴i𝑠𝑖𝑗𝑘 10 10 10 10 0 0 0 4 10 10 10 10 

 

The same objective value of 420 Mt of CO2 was 

obtained using the modified optimization model. We 

can also observe that all the inconsistencies between 

the results of Tan et al. and the raw data from the 

model have been eliminated. This eliminates the 

need for human intervention to properly pick out the 

correct results from the model. 

 

CASE STUDY 2 

Case 2 from Tan, et al. was also evaluated to test 

consistency of results of the modified optimization 

model. Both original and modified model obtained an 

objective value of 530 MT of CO2. The modified 
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model has also successfully eliminated the 

inconsistencies in the results. 

CASE STUDY 3 

To further magnify the problem of the original 

optimization model, Case Study 3 is presented below. 

Case study 3 considers a longer planning horizon of 

40 years.  

Table 9: Case Study 3 Parameters  

Sources Flow Rate 

(Mt/y) 

Time of 

Flow (y) 

Maximum 

Capture (Mt) 

1 10 0-20 200 

2 2.5 0-30 75 

3 4 0-35 140 

4 4 0-25 100 

5 6 10-40 180 

Total 26.5 n/a 695 

Sinks Injection 

Limit (Mt/y) 

Start  

Time (y) 

Maximum 

Storage (Mt) 

A 10 0 400 

B 10 5 500 

Total 20 n/a 900 

 

Table 10: Case Study 3 Results  

Sources Sink A Sink B Source 

Summary 

1 10 Mt/y (t=0 

to 20) 

0 200 Mt (100%) 

2 0 0 0 Mt (0%) 

3 0 4 Mt/y  (t=5 

to 35) 

120 Mt (86%) 

4 0 4 Mt/y  (t=5 

to 25) 

80 Mt (80%) 

5 6 Mt/y 

(t=20 to 40) 

0 120 Mt (67%) 

Sink Summary 

 320 Mt (80%) 200Mt(40%) 520 Mt of CO2 

Table 11: Case Study 3 𝑏𝑖𝑗 Variable Results (Original 

Optimization Model Raw Results) 

  j(1)  j(2)  

i (1)  1 0 

i (2) 0 0 

i (3) 0 1 

i (4) 0 1 

i (5) 1 0 

  
 

Table 12: Case Study 3 𝑏𝑖𝑗𝑘 Variable Results (Original Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

 k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

i (1)  1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 

i (2) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 

i (3) 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 

i (4) 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 

i (5) 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
 

Table 13: Case Study 3 𝑠𝑖𝑗𝑘 Variable Results (Original Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

j=1 k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

i (1)  10 10 10 10 10 10 10 10 0 0 0 0 0 10 10 10 

i (2) 0 0 0 0 0 0 2.5 2.5 0 0 0 0 0 0 2.5 2.5 

i (3) 0 0 0 0 0 0  4 0 4 4 4 4 4 4 4 

i (4) 0 0 0 0 0 4 4 4 0 4 4 4 4 4 4 4 

i (5) 0 0 0 0 6 6 6 6 0 0 0 0 0 0 0 0 

𝛴i𝑠𝑖𝑗𝑘 10 10 10 10 10 20 22.5 26.5 0 8 8 8 8 18 20.5 20.5 

𝛴i𝑠𝑖𝑗𝑘𝑄𝑖𝑘 10 10 10 10 6 6 6 6 0 8 8 8 8 4 4 0 

 

Table 14: Case Study 3 𝑏𝑖𝑗𝑘 Variable Results (Modified Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

 k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

i (1)  1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

i (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

i (3) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

i (4) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

i (5) 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
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Table 15: Case Study 3 𝑠𝑖𝑗𝑘 Variable Results (Modified Optimization Model Raw Results) 

 Sink 1 ( j=1) Sink 2 ( j=2) 

j=1 k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) k(1)  k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

i (1)  10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 

i (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

i (3) 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 0 

i (4) 0 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 

i (5) 0 0 0 0 6 6 6 6 0 0 0 0 0 0 0 0 

𝛴i𝑠𝑖𝑗𝑘 10 10 10 10 6 6 6 6 0 8 8 8 8 4 4 0 
 

As we can see in Case Study 3, the problem with the 

inconsistent results increases with the increase of 

inactive period of the source after the connection. 

Both original model and modified model obtained an 

objective value of 520 Mt of CO2.  

3. RESULTS AND DISCUSSION 
 

In terms of calculation speed and complexity, please 

refer to Table 16 for Model Statistics. The 

optimization is done using B-and-B solver in Lingo 

version 14 on a Core i3, 2.3 GHz processor. The 

modified model involves lesser variables due to 

removal of 𝑏𝑖𝑗 variable. It can be noticed that there 

are lesser iterations for Case 2 which is the largest 

system compared to Case 1 and 3. This indicates 

easier convergence of model for larger systems. 

Although computational time for original and 

modified model is negligible, it can be assumed that 

the modified model can handle larger systems better. 

Table 16: Comparison of Original and Modified 

Model Statistics 

 Original Modified 

Model Statistics CS 1 CS 2 CS 3 CS 1 CS 2 CS 3 

Objective Value 420 530 520 420 530 520 

Solver Iteration 0 344 20 19 246 19 

Total Variables 126 186 166 116 171 156 

Integer Variables 65 95 85 55 80 75 

Total Constraints 311 463 415 311 463 415 

Total Nonzeros 894 1326 1164 886 1315 1164 

Computational 

Time, (s) 

<1 <1 <1 <1 <1 <1 

 

4.  CONCLUSIONS 
 

A modified optimization model for optimal source 

sink matching in carbon capture and storage systems 

with time, injection rate, and capacity constraints 

has been formulated. It provides more accurate and 

robust results compared to the original model and 

eliminates inconsistencies that required human 

intervention in order to extract the correct 

conclusion. 

 

5.   NOMENCLATURE (1) 
 

Indices 
I Set of CO2 sources (𝑖 = 1, 2,. . . m) 

J Set of CO2 sinks (𝑗 = 1, 2,. . . n) 

K Set of Planning Periods (𝑘 = 1. 2,. . . o) 
 

Parameters 
𝐷𝑗  CO2 storage limit of sink 𝑗 
𝐸𝑗𝑘  CO2 injection rate limit of sink 𝑗 in period 𝑘 

𝑄𝑖𝑘  Binary parameter denoting the existence of 

source 𝑖 in period 𝑘 

𝑆𝑖𝐿  Lower limit for CO2 flowrate from source 𝑖 
𝑆𝑖𝑈  Upper limit for CO2 flowrate from source 𝑖 
𝑇𝐿  Minimum viable duration of connectivity 

𝑇𝑈  Duration of planning horizon 
 

Variables 
𝑏𝑖𝑗  Binary variable denoting the existence CO2 

stream from source 𝑖 to sink 𝑗 at any time 

within the planning horizon 

𝑏𝑖𝑗𝑘  Binary variable denoting the existence CO2 

stream from source 𝑖 to sink 𝑗 in period 𝑘 

𝑠𝑖𝑗𝑘  CO2 flowrate from source 𝑖 to sink 𝑗 in period 𝑘 
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