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Abstract:  Central to the pathology of Alzheimer’s Disease (AD) is the proteolytic 

processing of amyloid precursor protein (APP) into amyloid plaques. SORLA (sorting 

protein-related receptor with A-type repeats) has a major influence in such process as 

it alters the form of the substrate APP that is preferred by the enzymes 𝛼- and 𝛽- 

secretases, therefore inhibiting the amyloidogenic processing. This paper analyzed 

the behaviour of the solutions of the autonomous system of ordinary differential 

equations (ODE) that models the biochemical system by performing a stability 

analysis of the system. The mathematical model consists of 20 ordinary differential 

equations, which made it difficult to analyze the solution of the system. The order of 

the system was reduced to 9 by considering only the coupled equations in the system 

and by imposing initial conditions on the system, which was done to facilitate better 

the analysis of the solutions. The equilibrium point of the reduced system was found 

to be hyperbolic. In turn, the Hartman-Grobman Theorem allows us to infer the local 

behaviour of the system around the steady-state solution from the local behaviour of 

the corresponding linearized system around the origin. Consequently, the nature of 

the real parts of the eigenvalues of the real matrix 𝐴 representing the linearized 

system is the key to establish stability. The Routh-Hurwitz criterion was used to 

determine the nature of the eigenvalues of 𝐴. In the presence of SORLA, the steady-

state solution of the reduced system is asymptotically stable. It was also found that 

the stability is local. Immediate consequence of the stability analysis of the reduced 

system to the solutions of the original system was also obtained. 
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1. INTRODUCTION 

1.1 Background of the Study 
Alzheimer's disease (AD) is an ultimately 

fatal disorder wherein neurons die or no longer 

function normally, which leads to impairment of 

bodily functions such as walking and swallowing 

(Alzheimer's Association, 2003), and loss of memory,  

among others.  This disease affects not only the 

person afflicted with it, but also the lives of people 

close to him or her. 

The exact origin of the disease is not yet 

fully understood, and the increasing incidence of the 

disease among the human population makes it 

imperative to continue and intensify efforts to better 

understand the nature of AD and hopefully find a 
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cure. A popular hypothesis among medical 

researchers is known as the amyloid hypothesis.  

According to the Alzheimer's Association (2013), 

there are two main changes in the brain tissues of a 

person with AD – the presence of amyloid plaques 

(also called A𝛽 plaques) and the presence of twisted 

strands of the protein tau (tangles). Among the 

proponents of the amyloid hypothesis, it is believed 

that the presence of amyloid plaques is a main 

contributor to AD (Hardy & Selkoe, 2002). The 

amyloidogenic process involves the proteolytic 

processing of amyloid precursor protein (APP) into 

the neurotoxins A𝛽 plaques. Thus, the amyloid 

hypothesis suggests that the extent of APP 

processing into amyloid plaques is central in the 

development of AD.  

At present, efforts to prevent, interrupt, and 

cure AD are on the way, but drug trials are expensive 

and take a considerable amount of time since AD 

progresses very gradually and drug effectiveness can 

only be evaluated after a long period (Lao, 2012).  

Hence, one of the alternative measures towards 

understanding the disease is to mathematically 

represent the biochemical system involved in the 

amyloidogenic process. Modelling the system can 

provide researchers with a means to better 

understand various aspects of the process, as well as 

the cross-checking of experimental data. 

One such model using a system of ordinary 

differential equations was formulated by Lao (2013).  

It represents the amyloidogenic processing in AD 

under the influence of sorting protein-related 

receptor with A-type repeats (also known as SORLA). 

This is the quantitative model presented in Schmidt, 

Baum, Lao, Rateitschak, Schmitz, Teichmann,  

Wiesner, Petersen, Nykjaer, Wolf, Wolkenhauer, and 

Willnow (2012).  SORLA is believed to inhibit the 

processing of APP.  Hence, its presence in the system 

may have a key role in the development and progress 

of AD. 

In an effort to supplement the model 

presented in Schmidt et. al. (2012), the present study 

intends to conduct a stability analysis of the model.  

It is hoped that the results of the study can 

contribute to a better understanding of the 

biochemical processes that govern the development 

and progression of Alzheimer's disease. 

 

 

1.2 The Biochemical Network and the 

Mathematical Model 
In this section, we take a closer look at the 

biochemical model of amyloidogenic processing 

presented in Schmidt et. al. (2012). The biochemical 

network of the reactions involved in APP processing 

with the influence of SORLA is summarized in the 

figure below: 

Fig. 1. Biochemical network of the interaction of the 

reactants APP (blue symbols) with 𝛼- and 𝛽-

secretases (green symbols) and the formation of 

amyloidogenic and non-amyloidogenic products 

(orange symbols)  

  

The 𝑘’s appearing in the network are 

parameters associated with rates of reaction. Note 

that the chemical reactions in the system are evident 

from Figure 1. For instance, one such reaction is 

𝛼 + 𝐴𝑃𝑃 
𝑘3

⇌
𝑘−3

𝐶𝐴𝑃𝑃𝛼
. 

There are 8 reversible and 4 irreversible reactions 

shown in Figure 1. From these chemical reactions, 

the ordinary differential equations representing the 

mathematical model can be obtained by using the 

Law of Mass Action (Murray, 2001). We define first 

the key variables in the mathematical model in Table 

1. 

 

Table 1. Variables in the Mathematical Model 

Notation  Concentration Notation Concentration 

 in fmol of  in fmol of 

𝐸1 𝛼-secretase 𝐶4 𝐶𝐴𝑃𝑃𝑑𝛽𝑑
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𝐸2 𝛽-secretase 𝐶5 𝐶𝐴𝑃𝑃𝑆𝑂𝑅𝐿𝐴 

𝐸3 𝛼𝑑-secretase 𝑃1 𝑠𝐴𝑃𝑃𝛼 

Notation  Concentration Notation Concentration 

 in fmol of  in fmol of 

𝐸4 𝛽𝑑-secretase 𝑃2 𝑠𝐴𝑃𝑃𝛽 

𝑆1 𝐴𝑃𝑃 𝑃3 𝑠𝐴𝑃𝑃𝛼𝑑 

𝑆2 𝐴𝑃𝑃𝑑  𝑃4 𝑠𝐴𝑃𝑃𝛽𝑑  

𝑋 𝑆𝑂𝑅𝐿𝐴 𝑃5 𝐶83 

𝐶1 𝐶𝐴𝑃𝑃𝛼  𝑃6 𝐶99 

𝐶2 𝐶𝐴𝑃𝑃𝛽  𝑃7 𝐶83𝑑 

𝐶3 𝐶𝐴𝑃𝑃𝛼𝑑
 𝑃8 𝐶99𝑑 

 

 Denoting by 𝑓̇ the derivative of 𝑓 with 

respect to time 𝑡 and applying the Law of Mass 

Action, we get the following system, which we will 

refer to as system (1). 

�̇� = −𝑘1𝑆1𝑋 + 𝑘−1𝐶5 

�̇�1 = −𝑘1𝑆1𝑋 + 𝑘−1𝐶5 − 𝑘3𝑆1𝐸2 + 𝑘−3𝐶2 

 −𝑘5𝑆1𝐸1 + 𝑘−5𝐶1 + 2(𝑘−1𝑆2 − 𝑘𝑎𝑆1
2) 

�̇�2 = −𝑘31𝑆2𝐸4 + 𝑘−31𝐶4 − 𝑘51𝑆2𝐸3  

 +𝑘−51𝐶3 − 𝑘−𝑎𝑆2 + 𝑘𝑎𝑆1
2 

�̇�1 = −𝑘5𝑆1𝐸1 + (𝑘−5 + 𝑘6)𝐶1 + 2(𝑘−𝑐𝐸3

− 𝑘𝑐𝐸1
2) 

�̇�2 = −𝑘3𝑆1𝐸2 + (𝑘−3 + 𝑘4)𝐶2 + 2(𝑘−𝑏𝐸4

− 𝑘𝑏𝐸2
2) 

�̇�3 = −𝑘51𝑆2𝐸3 + (𝑘−51 + 𝑘61)𝐶3 + 𝑘𝑐𝐸1
2

− 𝑘−𝑐𝐸3 

�̇�4 = −𝑘31𝑆2𝐸4 + (𝑘−41 + 𝑘41)𝐶4 + 𝑘𝑏𝐸2
2

− 𝑘−𝑏𝐸4 

�̇�1 = 𝑘5𝑆1𝐸1 − (𝑘−5 + 𝑘6)𝐶1 

�̇�2 = 𝑘3𝑆1𝐸2 − (𝑘−3 + 𝑘4)𝐶2 

�̇�3 = 𝑘51𝑆2𝐸3 − (𝑘−51 + 𝑘61)𝐶3 

�̇�4 = 𝑘31𝑆2𝐸4 − (𝑘−41 + 𝑘41)𝐶4 

�̇�5 = −�̇� 

�̇�1 = �̇�5 = 𝑘6𝐶1 

�̇�2 = �̇�6 = 𝑘4𝐶2 

�̇�3 = �̇�7 = 2𝑘61𝐶3 

�̇�4 = �̇�4 = 2𝑘41𝐶4 

2.  METHODOLOGY 
 

In this study, we will analyze the solutions of 

system (1), by performing a stability analysis of the 

model. However, the system consists of 20 

differential equations which makes it difficult to 

accomplish this goal. Hence, we will reduce the order 

of the system. This will be done by (i) initially 

considering only the coupled equations in the system; 

that is, disregarding the uncoupled equations �̇�𝑖(i = 1, 

… , 8), since their solutions can be obtained by simple 

integration; and by (ii) imposing the initial conditions 

𝑋(0)  =  𝑥0 > 0, 𝐸1(0) = 𝛼 > 0, 𝐸2 (0) = 𝛽 > 0, 

𝐸3 (0) = 𝐸4 (0) = 0, and 𝐶𝑖(0) = 0, which enables us to 

solve for the particular solutions of the other 

variables. Through this strategy, the number of 

equations in the system can be reduced to 9. 

Meanwhile, 𝑥0, 𝛼, and 𝛽 become additional 

parameters to the model as a result of the reduction 

of the size of the system.  

We will find the equilibrium points of the 

system obtained after reducing the number of 

equations. Only the equilibrium points with 

biological importance will be considered.  The main 

problem that will be solved in this paper is 

determining the stability of the equilibrium points 

that were computed. To this end, linearization 

technique and Hartman-Grobman Theorem will be 

used. Through these, the stability problem can be 

solved by simply looking at the roots of the 

characteristic polynomial of the matrix representing 

the linearized system. In particular, the nature of the 

real parts of these roots will be evaluated. The 

Routh-Hurwitz criterion will be used towards this 

end so that there is no need to compute the roots; the 

nature of the real parts of the roots can be 

determined by looking at the coefficients of the 

polynomials and evaluating if these coefficients 

satisfy the criterion given by the Routh-Hurwitz test. 

Finally, if the equilibrium points enumerated in this 

study were found to be stable, we will determine 

whether the stability is local or global. 

 

3.  RESULTS AND DISCUSSION 

3.1 Simplification of the Model  
 

By using the initial conditions stated in the 

methodology, the system is reduced to  
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�̇�1 = −𝑘1𝑆1(𝑥0 − 𝐶5) + 𝑘−1𝐶5 − 𝑘3𝑆1[𝛽 

 −(𝐶2 + 2𝐸4 + 2𝐶4)] + 𝑘−3𝐶2 − 𝑘5𝑆1[𝛼 

 −(𝐶1 + 2𝐸3 + 2𝐶3)] + 𝑘−5𝐶1

+ 2(𝑘−1𝑆2 − 𝑘𝑎𝑆1
2) 

�̇�2 = −𝑘31𝑆2𝐸4 + 𝑘−31𝐶4 − 𝑘51𝑆2𝐸3  

 +𝑘−51𝐶3 − 𝑘−𝑎𝑆2 + 𝑘𝑎𝑆1
2 

�̇�3 = −𝑘51𝑆2𝐸3 + (𝑘−51 + 𝑘61)𝐶3 

 +𝑘𝑐[𝛼 − (𝐶1 + 2𝐸3 + 2𝐶3)]2 − 𝑘−𝑐𝐸3 

�̇�4 = −𝑘31𝑆2𝐸4 + (𝑘−41 + 𝑘41)𝐶4 

 +𝑘𝑏[𝛽 − (𝐶2 + 2𝐸4 + 2𝐶4)]2 − 𝑘−𝑏𝐸4 

�̇�1 = 𝑘5[𝛼 − (𝐶1 + 2𝐸3 + 2𝐶3)]𝐸1

− (𝑘−5 + 𝑘6)𝐶1 

�̇�2 = 𝑘3𝑆1[𝛽 − (𝐶2 + 2𝐸4 + 2𝐶4)]

− (𝑘−3 + 𝑘4)𝐶2 

�̇�3 = 𝑘51𝑆2𝐸3 − (𝑘−51 + 𝑘61)𝐶3 

�̇�4 = 𝑘31𝑆2𝐸4 − (𝑘−41 + 𝑘41)𝐶4 

�̇�5 = 𝑘1𝑆1(𝑥0 − 𝐶5) − 𝑘−1𝐶5 

 

which we will refer to as system (2). Note that the 

reduction of order gives rise to additional parameters 

𝑥0, 𝛼, and 𝛽, which from a biological perspective 

represent the total concentration of SORLA, 𝛼-

secretase, and 𝛽- secretase, respectively, that are 

initially present in the system.  

 

3.2 The Steady-state Solution and its 

Stability 
  

In any dynamical system  �̇� = 𝑓(𝑥) where 

𝑥 ∈ ℝ𝑛, a point 𝜉 ∈ ℝ𝑛 is called equilibrium point if 

𝑓(𝜉) = 0. For system (2), the only biochemically 

meaningful equilibrium point is the point  

 

𝜉 = (0,0, 𝑒3, 𝑒4, 0,0,0,0,0) 

where  

𝑒3 = (4𝐾𝑐𝛼 + 1 − √8𝐾𝑐𝛼 + 1)/8𝐾𝑐, 

𝑒4 = (4𝐾𝑏𝛽 + 1 − √8𝐾𝑏𝛽 + 1)/8𝐾𝑏, 

𝐾𝑐 = 𝑘𝑐/𝑘−𝑐, and 𝐾𝑏 = 𝑘𝑏/𝑘−𝑏 

 

under the assumption that 𝛼, 𝛽 > 0 and using the fact 

that the solutions of (2) are nonnegative for all time 𝑡 

whenever nonnegative initial conditions are imposed 

(Chellaboina, Bhat, Haddad, & Bernstein, 2009). 

 When studying stability, we are concerned 

with the behaviour of the solutions around an 

equilibrium point. A solution of the system �̇� = 𝑓(𝑥) 

through the point 𝑦𝑜 ∈ ℝ𝑛 is a function 𝜙𝑡(𝑦0) such 

that �̇�𝑡(𝑦0) = 𝑓(𝜙𝑡(𝑦0)) and 𝜙0(𝑦0) = 𝑦0. When 𝜉 is 

an equilibrium point, 𝜙𝑡(𝜉) = 𝜉 for all time 𝑡 is a 

solution, which is called a steady-state solution. By 

the Fundamental Existence-Uniqueness Theorem, 

system (2) has a unique solution through any point 

𝑦0 ∈ ℝ𝑛 since it is a polynomial system.  

Let 𝜙𝑡(𝑦0) denote the solution of system (2) 

through 𝑦0 and let 𝜉 be an equilibrium point. 𝜉 is 

stable if for any choice of 𝜀 > 0, there exists some 

𝛿 > 0 such that for any 𝑦0 with |𝑦0 − 𝜉| < 𝛿 and 𝑡 ≥ 0, 

|𝜙𝑡(𝑦0) − 𝜉| < 𝜀. If this condition is not satisfied, then 

it is unstable. If it is stable and if there exists some 

𝛾 > 0 such that lim𝑡→∞ 𝜙𝑡(𝑦0) = 𝜉 for all points 𝑦0 

with |𝑦0 − 𝜉| < 𝛾, then it is asymptotically stable 

(Perko, 2001). In other words, an equilibrium point 𝜉 

is stable if solutions starting near 𝜉 stay near 𝜉 for 

all time 𝑡 ≥ 0. It is asymptotically stable if solutions 

not only stay near 𝜉 but also converges to 𝜉 as 𝑡 → ∞ 

(Wiggins, 2003). Using only this definition, it is 

difficult to determine the stability. In the proof of the 

main result in this paper, the Hartman-Grobman 

Theorem and linearization were the main tools in 

establishing stability. Through these, it suffices to 

show that the real parts of the eigenvalues of the 

Jacobian matrix 𝐴 = 𝐷𝑓(𝜉), where  

𝑓(𝑆1, 𝑆2, 𝐸3, 𝐸4, 𝐶1, … , 𝐶5) = (�̇�1, �̇�2, �̇�3, �̇�4, �̇�1, … , �̇�5) 

are all negative, which is what will be shown in the 

proof of the following theorem. 

 

Theorem: When SORLA is present in the system, 

that is, when 𝑥0 > 0, the equilibrium point  

𝜉 = (0,0, 𝑒3, 𝑒4, 0,0,0,0,0) 

is an asymptotically stable equilibrium point of 

system (2). The stability of 𝜉 is not global. 

 

Proof: The Jacobian of  

𝑓(𝑆1, 𝑆2, 𝐸3, 𝐸4, 𝐶1, … , 𝐶5) = (�̇�1, �̇�2, �̇�3, �̇�4, �̇�1, … , �̇�5) 

at the point 𝜉 is 

𝐴 =  (

𝐴1 𝐴2 𝐴3

𝐴4 𝐴5 𝐴6

𝐴7 𝐴8 𝐴9

) 

where  

𝐴1 = (

𝑎11 2𝑘−𝑎 0
0 𝑎22 0
0 −𝑘51𝑒3 𝑎33

), 𝐴2 = (
0 𝑘−5 𝑘−3

0 0 0
0 2𝑎𝑘𝑐 0

),  
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𝐴3 =  (

0 0 𝑘−1

𝑘−51 𝑘−31 0
𝑎37 0 0

),  𝐴4 = (

0 −𝑘31𝑒4 0
−𝑘5𝑎 0 0
−𝑘3𝑏 0 0

),   

 

𝐴5 = (
𝑎44 0 2𝑏𝑘𝑏

0 𝐾1 0
0 0 𝐾2

),  

 

𝐴6 = (
0 𝑎48 0
0 0 0
0 0 0

),  

𝐴7 = (

0 𝑘51𝑒3 0
0 𝑘31𝑒4 0

𝑘1𝑥0 0 0
), 

 

𝐴8 = (
0 0 0
0 0 0
0 0 0

),  

 

𝐴9 = (

𝐾3 0 0
0 𝐾4 0
0 0 −𝑘−1

),  

 

 

and 

 

𝑎 = 2𝑒3 − 𝛼, 𝑏 = 2𝑒4 − 𝛽, 𝐾1 = −(𝑘6 + 𝑘−5), 

𝑎44 = 4𝑏𝑘𝑏 − 𝑘−𝑏, 𝐾2 = −(𝑘4 + 𝑘−3), 

𝑎11 = 𝑎𝑘5 + 𝑏𝑘3 − 𝑘1𝑥0, 𝐾3 = −(𝑘61 + 𝑘−51), 

𝑎22 = −(𝑘−𝑎 + 𝑘51𝑒3 + 𝑘31𝑒3 + 𝑘31𝑒4), 

𝑎33 = 4𝑎𝑘𝑐 − 𝑘−𝑐, 𝐾4 = −(𝑘41 + 𝑘−31), 

𝑎37 = 𝑘61 + 𝑘−51 + 𝑘𝑐(8𝑒3 − 4𝛼), and 

𝑎48 = 𝑘41 + 𝑘−31 + 𝑘𝑏(8𝑒4 − 4𝛽), 

 

The characteristic polynomial 𝑃(𝜆) = det(𝐴 − 𝜆𝐼9) of 𝐴 

is  

𝑃(𝜆) = −(𝜆 − 𝑎33)(𝜆 − 𝑎44)𝑃1(𝜆)𝑃2(𝜆) 

where 

 

𝑃1(𝜆) = 𝜆3 + (−𝑎22 − 𝐾3 − 𝐾4)𝜆2

+ (𝑎22𝐾3 + 𝑎22𝐾4 + 𝐾3𝐾4 − 𝑘31𝑘−31𝑒4

− 𝑘51𝑘−51)𝜆 − 𝑎22𝐾3𝐾4 + 𝑘31𝑘−31𝑒4𝐾3

+ 𝑘51𝑘−51𝑒3𝐾4 
and 

  

𝑃2(𝜆) = 𝜆4 + (𝑘−1 − 𝐾1 − 𝐾2 − 𝑎11)𝜆3

+ (𝑎11𝐾1 + 𝑎11𝐾2 − 𝑘−1𝐾1 − 𝑘−1𝐾2

− 𝑎11𝑘−1 + 𝐾1𝐾2 + 𝑎𝑘5𝑘−5 + 𝑏𝑘3𝑘−3

− 𝑘1𝑘−1𝑥0)𝜆2

+ (𝑘−1𝐾1𝐾2 − 𝑎11𝐾1𝐾2 + 𝑎11𝑘−1𝐾1

+ 𝑎11𝑘−1𝐾2 + 𝑎𝑘5𝑘−1𝑘−5 + 𝑏𝑘3𝑘−1𝑘−3

− 𝑎𝑘5𝑘−5𝐾2 − 𝑏𝑘3𝑘−3𝐾1 + 𝑘1𝑘−1𝑥0𝐾1

+ 𝑘1𝑘−1𝑥0𝐾2)𝜆 − 𝑎11𝑘−1𝐾1𝐾2

− 𝑘1𝑘−1𝑥0𝐾1𝐾2 − 𝑎𝑘5𝑘−1𝑘−5𝐾2

− 𝑏𝑘3𝑘−1𝑘−3𝐾1. 

 

It can be shown by Routh-Hurwitz Criterion that the 

real parts of the roots of 𝑃1(𝜆) and 𝑃2(𝜆) are all 

negative. Since 𝑎33 < 0 and 𝑎44 < 0, then all the roots 

of 𝑃(𝜆) have negative real parts. Thus, 𝜉 is a locally 

asymptotically stable equilibrium point. Further, 

since  

𝜉∗ = (0,0, 𝑒3
+, 𝑒4

+, 0,0,0,0,0) 

where  

𝑒3 = (4𝐾𝑐𝛼 + 1 + √8𝐾𝑐𝛼 + 1)/8𝐾𝑐, and  

𝑒4 = (4𝐾𝑏𝛽 + 1 + √8𝐾𝑏𝛽 + 1)/8𝐾𝑏, 

is also an equilibrium point, then  

lim
𝑡→∞

𝜙𝑡(𝜉∗) = 𝜉∗. 

Hence, the stability of 𝜉 is not global. The claim of 

the theorem now follows. ■ 

 

3.3 Implications on the Original System 
 

 It follows from the above theorem that 

whenever SORLA is present in the system, then a 

solution of system (2) that starts in some 

neighbourhood of 𝜉 has a 𝐶5-component which 

approaches zero over time. Since from the original 

system (1),  �̇� + �̇�5 = 0 (that is, 𝑋 + 𝐶5 = 𝑥0), then 

𝑋(𝑡) → 𝑥0 as 𝑡 → ∞.  

 Imposing the initial conditions 𝑆1(0) = 𝑠0, 

𝑆2(0) = 0, and 𝑃𝑖(0) = 0 for each 𝑖 = 1,2,3,4 and using 

the identity  

∑ �̇�𝑖

4

𝑖=1

+ �̇�1 + �̇�2 + 2�̇�3 + 2�̇�4 + �̇�5 + �̇�1 + 2�̇�2 = 0 

from system (1), then  

∑ 𝑃𝑖

4

𝑖=1

+ 𝐶1 + 𝐶2 + 2𝐶3 + 2𝐶4 + 𝐶5 + 𝑆1 + 2𝑆2 = 𝑠0. 

It follows that  

lim
𝑡→∞

∑ 𝑃𝑖

4

𝑖=1

= 𝑠0. 

In a similar manner, we get  

lim
𝑡→∞

∑ 𝑃𝑖

8

𝑖=5

= 𝑠0 + 𝑝50 + 𝑝60 + 𝑝70 + 𝑝80 

 

where 𝑝𝑖0 = 𝑃𝑖(0) ≥ 0 for 𝑖 = 5,6,7,8.  

Finally, if the region of attraction of 𝜉 

contains a point of the form (𝑥1, 𝑥2, 0,0, 𝑥5, … , 𝑥9) ∈ ℝ9, 

then since  

�̇�1 + �̇�1 + 2�̇�3 + 2�̇�3 = 0 

that is, 𝐸1 + 𝐶1 + 2𝐸3 + 2𝐶3 = 𝛼, then  

𝐸1(𝑡, 𝛼) → (𝛼 − 𝑒3) and 𝐸3(𝑡, 0) → 𝑒3 
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as 𝑡 → ∞ where 𝐸1(0, 𝛼) = 𝛼 and 𝐸3(0,0) = 0. 

Likewise,  

𝐸2(𝑡, 𝛽) → (𝛽 − 𝑒4) and 𝐸4(𝑡, 0) → 𝑒4 

as 𝑡 → ∞.  

 

4.  CONCLUSIONS 
 
 The results indicate that SORLA persists in 
the system over time; that is, once SORLA is present 
in the system, it will return to its initial amount as 
time grows. Lao (2012) found out that as SORLA 
prevents APP dimerization, the high tendency of the 
substrates to form complexes with secretases is 
prevented. Consequently, despite the fact that 
𝐸3(𝑡, 0) → 𝑒3 and 𝐸4(𝑡, 0) → 𝑒4 as 𝑡 → ∞, that is, 
inspite of the growth in concentration of the dimer 
enzymes 𝛼𝑑- and 𝛽𝑑-secretases, formation of 
complexes 𝐶3 and 𝐶4 is prevented as SORLA stays 
present in the system over time. Further, the decline 
in 𝛼- and 𝛽-secretases indicates the prevention of 
formation of the complexes 𝐶1 and 𝐶2. In turn, the 
formation of amyloidogenic products is inhibited, 
which is the primary factor in AD development.  
 In conclusion, the mathematical model 
suggests that SORLA has a very significant role in 
APP processing as it affects the enzymatic processes 
in both the monomeric and dimeric compartments. 
This supports the findings of Schmidt, et. al (2012) 
that SORLA  prevents APP oligomerization. The 
stability analysis shows that this influence of SORLA 
to prevent proteolytic processing persists in the 
sytem through time. Therefore, the presence of 
SORLA is indicative of desirable long-time behaviour 
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