

HCT-II-020 1
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

A Case-Based Reasoning Approach to Providing Feedback to Novice

Programmers

Ryan Dimaunahan and Raymund Sison

College of Computer Studies

De La Salle University

ryan.dimaunahan@dlsu.edu.ph, raymund.sison@delasalle.ph

Abstract: Adaptive feedback contains information that individual users of a system will find helpful

rather than cryptic. A case-based reasoning (CBR) approach to automatic feedback generation can

provide feedback that is timely and adaptive; however, such an approach generally needs a

sufficiently populated case base. In this paper, we describe a pedagogical programming tool called

CBR-C that uses a CBR based approach to give meaningful and adaptive feedback to students

learning the C programming language for the first time. CBR-C generates multiple levels of feedback

depending on the number of cases in its case base and the required remediation of the student, and

is able to give feedback despite having insufficient cases in its case base. Experiments for evaluating

the feedback generation capability of CBR-C were conducted with students learning to program in C

for the first time. These students were assigned to control and experimental groups, and each

student was instructed to submit solutions to a programming problem incrementally until the

student finally gets a correct answer, i.e., a C program that meets all the given programming

requirements. The improvement in code quality of each submission was then determined to see

whether the feedback generated by CBR-C had any effect on the code of the students. The

improvement in code quality of the students who used CBR-C was greater, with mild statistical

significance, than those who did not, indicating that receiving feedback from CBR-C regarding one’s

program is better than not receiving any feedback at all, at least as far as students learning C for the

first time are concerned.

Keywords: Feedback, Case Based Reasoning, Pedagogical Programming Tool

1. INTRODUCTION

1.1 Research Description
Computer programming is a very

challenging subject to learn for the first time, as

learners are often forced to face multiple challenges

simultaneously (Jenkins, 2002), thus increasing

their cognitive loads (Winslow, 1996). Not only

would the learner have to know how to devise

program logic which he or she would then translate

into code; he or she is also required to understand

the semantics and syntax of the language itself; the

former being the more difficult task of the two (de

Barros, dos Santos Mota, Delgado, & Matsumoto,

2005).

In addition to this, learners are also

required to understand how to use the Program

Development Environment (PDE) they were

instructed to use, the common examples of which

are designed for use by experienced programmers,

with features such as basic syntax highlighting,

automatic keyword completion, in-depth debugging

tools, and generation of entire code segments

(Vogts, Calitz, & Greyling, 2008). The error

messages returned by these PDEs, while

HCT-II-020 2
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

informative, are not always helpful for learners as,

according to Nienaltowski, Pedroni, and Meyer

(2008), the usefulness of error messages does not

always lay in the amount of information they

contain; what matters is the manner by which

these error messages were presented.

In the analysis of programming behavior by
Kummerfeld and Kay (2003), students learning

how to program for the first time are not as good in

understanding error messages, even if the error

messages were informative. Experienced

programmers, who have a deeper understanding of

a programming language, benefit more from

informative error messages, and tend to react and

formulate solutions faster with regards to them

(Kummerfeld & Kay, 2003). These studies reveal a

need for adaptive feedback, to instruct novice

programmers on how to interpret error messages.

This finding parallels the recommendations for

formative feedback found in a review by Shute

(2008); feedback must be “valid, objective, focused

and clear” and “if feedback is not specific or clear, it

can impede learning and frustrate learners” (Shute,

2008).

Several approaches were considered in this

research for diagnosing code errors and providing

adaptive feedback to learners, among them are the

Value-based Diagnosis Model proposed by Mateis,

Stumptner, and Wotawa (2000), the Modified

Reiter’s Algorithm used by de Barros, Delgado, and

Machion (2004) for PROPAT, Intention-based

Detection employed in PROUST (Johnson &

Soloway, 1986) and partly by JITS (Suarez & Sison,

2008), and Case-Based Reasoning (Leake, 1996)

implemented in an Intelligent Tutoring System by

Reyes (2002).

Case-based reasoning (CBR) by Leake

(1996) is a knowledge retrieval and acquisition

technique that uses past experiences and solutions

to solve future problems. CBR does this by

representing previously encountered problems and

their respective potential solutions as a case, and

storing all experienced cases in a case base. When a

novel problem is encountered, the case-base is

searched for the closest possible match to the novel

problem. The solution associated with this match is

then adapted to the new problem; this adapted

solution will then be evaluated based on how well it

addressed the problem. This new problem solution

pair will then be stored in the case-base as a new

case, to serve as an additional reference when

another new problem is encountered.

CBR has four major phases; Leake (1996)

defines them as Case Retrieval, Case Adaptation,

Case Evaluation and Case Storage, while Aamodt

and Plaza (1994) defines them as Retrieve, Reuse,

Revise and Retain. Fig. 1, adapted from Aamodt

and Plaza (1994) illustrates these four major

phases. Every problem that needs a solution is

treated as a case in CBR (Aamodt & Plaza, 1994)

describes a case as a “problem situation”, which is

an “experienced situation” that has been learned by

the CBR system. It is a combination of the problem

introduced to the CBR system and the suggested

solution to the problem. When a new problem is

introduced to the CBR, a case is retrieved from the

case base; this is Case Retrieval. Before presenting

this retrieved case, it is first adapted to more

accurately solve the newly submitted problem; this

is Case Adaptation. After this adapted case has

been presented as a suggested solution, it is then

evaluated to check if the solution addresses the

new problem; this is Case Evaluation. Finally, this

adapted solution along with the new problem will

be stored as a case in the case base.

HCT-II-020 3
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

Fig. 1 The major CBR processes

A CBR based approach was selected for this

research because of its advantages over traditional

rule-based approaches, as outlined by Leake (1996).

In terms of knowledge acquisition, traditional rule-

based approaches might have difficulty

generalizing rules from data, and if applied to real

time diagnosis it might take time for rules to

emerge as the system would require some amount

of training. CBR on the other hand works with

readily available cases, which, by the nature of

CBR, is built in real time (Leake, 1996), which is

required for this research as it involves real time

feedback generation. Related to this, traditional

rule-based approaches require adequate initial

representation of possible scenarios, and would

have to undergo retraining if novel scenarios are

introduced. This makes it less suitable for

diagnosis and remediation, as the misconceptions of

students are not finite. Since CBR learns

incrementally (i.e., it doesn’t attempt to learn

everything at once), it can adapt constantly. New

cases may be added to the case base without having

to reset the system (Leake, 1996). In addition, CBR

based approaches can also store cases where

feedback was not properly given, or the feedback

did not completely address the misconception of the

student, thus enabling CBR approaches to warn

against problematic solutions (Leake, 1996). This is

useful in feedback generation, as not all feedback

will automatically result in successful remediation.

1.2 Research Objectives and Scope
The general objective of this research is to

test the effectiveness of a pedagogical programming

environment, implementing a CBR-based approach

to diagnosis and remediation that provides

meaningful feedback in the form of instructional

error messages for logical errors on novice

programmers learning the C language for the first

time. In line with these objectives, we developed a

pedagogical programming tool called CBR-C that

makes use of a CBR (Leake, 1996) based approach

to provide adaptive feedback to students learning

how to program for the first time, which is able to

give feedback despite having insufficient cases in

its case base.

This research focuses only on and is

constrained by the subset of the C programming

language covered by the Introductory to Computer

Programming (COMPRO1 or COMMAT1) subject of

De La Salle University Manila (DLSU). These

topics are:

 Basic Programming Concepts and the

Basic Program Skeleton

 Tokens and Expressions

 Basic Input and Output Statements (printf

and scanf)

 Conditionals

 Iterative Statements (Event-controlled and

Count-controlled loops)

Because of this, CBR-C was developed

specifically for programmers learning the C

language for the first time; CBR-C only works

efficiently on programs of the said scale. In

addition, only logical errors would be covered by

this research; syntax errors were not addressed by

CBR-C. It is expected that, before using the CBR-C,

the novice programmer must have at least

completed writing a whole program. The PDE will

not be able to successfully provide appropriate

HCT-II-020 4
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

feedback if CBR-C was used it in the middle of

coding.

CBR-C generates four levels of feedback

depending on the number of cases in its case base

and the required remediation of the student. This

approach was used to address the issue of

insufficient cases in the case base. Table 1 shows

these four feedback levels. CBR-C will always

attempt to generate the highest feedback level

possible.

Table 1 Levels of feedback provided by CBR-C

Level Description

0 The correct code is revealed to the

student.

1 The results of test cases will be

revealed.

2 The differences between the closest non-

faulty code to the submitted code will be

revealed to the student.

3 Explanation on the underlying

misconception will be given to the

student. The teacher has the option to

give this feedback if the students were

not prepared to give these explanations.

 Level 3 feedback can only be given if there

exists a case in the case base that sufficiently

matches the new case. This feedback level provides

a detailed description of the error found in the

student’s code, and is given either by other

students who have solved the same problem in the

past, or by the teacher if the student cannot

adequately explain the error. In the absence of

Level 3 feedback, CBR-C will expose the difference

between the closest matching non-faulty code and

the code of the student. The teacher is required to

introduce at least one correct solution to CBR-C;

this could be used as a basis for Level 2 feedback if

the code of the student matches this correct

solution enough. Level 1 feedback is given when

both Level 2 and 3 feedbacks cannot be given. CBR-

C will simply reveal the results of testing the code

of the student against a set of test cases introduced

to CBR-C. Finally, should the student give up,

Level 0 feedback will be given.

2. METHODOLOGY

2.1 Evaluating Feedback Generation of

CBR-C
To test the effects of CBR-C generated

feedback on students learning to program in C for

the first time, a preliminary experiment was

conducted on twenty six Manila Science High

School students. These students are incoming third

year high school students who would be learning C

programming on their third year. The hypothesis

was that programming with the help of feedback

from a tool like CBR-C would be better than

programming without. In this regard, other

features of CBR-C were not factored into the

experiment and were disabled.

These students were divided into two

groups, a Control group which did not receive any

feedback apart from whether their submitted code

was buggy or not, and an Experimental group,

which received feedback from CBR-C. The division

of these two groups was done at random. Both

groups were given access to Dev C++ only until

they were able to remove any Syntax Errors

manifested in their code. Afterwards, both groups

were required to use only a text editor (Notepad) to

debug their code. The students were to submit their

code to the experimenter in charge of their group

once they have successfully removed any syntax

errors. Their code was sent via a network tool to

the machine of the experimenter.

For the Control group, once the

experimenter was notified of a submission, the

experimenter then compiled the submitted code.

The compiled program was checked against test

cases to see if the code is buggy or not. If it was,

then the student was informed that his or her code

was no longer buggy; otherwise, the executable

(.exe) file was sent back to the student for them to

test and fix. For the Experimental group, the same

procedure was used but instead of compiling the

student’s submitted code, the experimenter

introduced the code to CBR-C. The feedback

generated by CBR-C was then presented to the

student and the executable (.exe) file was sent back

to them to test and fix. This was repeated until the

HCT-II-020 5
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

submission of the student had met all the given

programming requirements.

For the experiment, Level 2 Feedback was

not given, and Level 3 Feedback was given as much

as possible. In the absence of relevant Level 3

Feedback, Level 1 Feedback was given instead.

Level 2 Feedback was not given because student

profiling could not be feasibly performed. Extra

cases were also added into the Case Base of CBR-C,

since the primary goal of the experiment is to see if

giving feedback actually helps students determine

the underlying misconceptions in their code and if

doing so could help improve code quality. These

cases were built from problems given to the

students prior to the experiment.

2.2 The Odd Sum Problem Experiment
The programming problem the students

were tasked to solve was the Odd Sum Problem

shown in Fig. 2.

Problem Description: Until the user inputs 0,

keep asking for integer inputs. Get the sum of all

the odd inputs and display the result. Do not put

input or output prompts in your solution.

Fig. 2 The description of the Odd Sum Problem

Four test cases as shown in Table 2 were

used to test the correctness of the student

submissions. In addition, eleven extra cases were

introduced into CBR-C. While not all possible

misconceptions were represented in these cases,

since these came from past submissions of the

students involved in the experiment, it is hoped

that these cases were adequate enough to represent

common misconceptions for the group.

Table 2 The test cases for the Odd Sum Problem

Test Case

Number
Input Expected Output

0 0 0

1 1 3 5 7 0 16

2 2 4 6 8 0 0

3 1 2 3 4 5 0 9

3. RESULTS AND DISCUSSION

3.1 Effects of CBR-C Feedback on

Students
Of the students in the Experimental group,

five were able to resubmit again after their first

submission. These were the students who were

given feedback. Two of these were given Level 3

Feedback while three were given Level 1 Feedback.

From the Control group, nine students were able to

give a first and second submission. They were told

that their code was incorrect, no other feedback or

guidance was given to them. Table 3 contains the

average code quality of the first and second

submissions of the Experimental and Control group

and the average difference in code quality between

two, computed using the pqGram Tree Edit

Distance Approximation metric (Bille, 2005)

against the correct code of the teacher. It was

observed that the codes submitted by the students

did not deviate from the correct code of the teacher,

and that the buggy codes submitted had the same

intention as the correct code of the teacher,

therefore code quality can be checked against the

code of the teacher.

Table 3 Results of the Odd Sum Problem

Experiment

Average

Code

Quality of

First

Submission

Average

Difference

between the

Second and

First

Submissions

Average

Code

Quality of

Second

Submission

Experimental 72.04% 9.92% 81.97%

Control 72.43% 2.18% 74.61%

Following Sison (2009), the Wilcoxon Rank

Test for statistical significance was used to

determine if there was a significant difference

between the improvement of the code qualities of

the submissions of the Experimental and Control

groups. This was because it was not immediately

clear that the data gathered falls under the normal

distribution. The test yielded a p-value of 0.0548,

which means that the difference between the

HCT-II-020 6
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

improvements of the quality of the codes was

mildly statistically significant given the chosen

significance level (0.05).

4. CONCLUSIONS

In this research, CBR-C, a Pedagogical

Programming Tool that implements a Case-Based

reasoning approach, has been developed. This tool

provides meaningful feedback for diagnosing and

remediating misconceptions that give rise to logical

errors found in the code of novice programmers

learning the C language for the first time. This

meaningful feedback is in the form of instructional

error messages that provides more information

through the form of hints, clues or explanations of

the underlying misconceptions of the students, as

suggested by Sison, Numao, and Shimura (2000).

Experiments showed that receiving

feedback from CBR-C results in higher code quality

than receiving no feedback, therefore receiving

feedback is better than not receiving feedback.

CBR-C does not incorporate student

profiling into its approach. Student profiling, even

as simple as a survey form to be filled up prior to

using the tool, could be helpful in identifying what

kind of feedback a student might appreciate. A

student might not want in depth feedback

immediately; he or she might prefer to be given

hints first before receiving a full explanation of the

misconceptions present in his or her code. This

could serve as an additional factor in deciding

which level of feedback to give a student.

5. REFERENCES

Aamodt, A., & Plaza, E. (1994). Case-Based

Reasoning: Foundational Issues,

Methodological Variations, and System

Approaches. AICom - Artificial Intelligence

Communications, 39-59.

Bille, P. (2005). A Survey on Tree Edit Distance

and Related Problems. Theor. Comput.

Sci., 217-239.

de Barros, L., Delgado, K., & Machion, A. (2004).

An ITS for programming to explore

practical reasoning. Proceedings of the

Brazilian Conference on Computer

Education.

de Barros, L., dos Santos Mota, A., Delgado, K., &

Matsumoto, P. (2005). A tool for

programming learning with pedagogical

patterns. Proceedings of the 2005 OOPSLA

workshop on Eclipse technology eXchange

(mp. 125-129). San Diego, California:

ACM.

Jenkins, T. (2002). On the Difficulty of Learning to

Program. 3rd annual Conference of LTSN-

ICS. Loughbourgh.

Johnson, W., & Soloway, E. (1986). PROUST:

knowledge-based program understanding.

Sa Readings in artificial intelligence and

software engineering (mp. 443-451). San

Francisco: Morgan Kaufmann Publishers

Inc.

Kummerfeld, S., & Kay, J. (2003). The neglected

battle fields of syntax errors. Proceedings

of the fifth Australasian conference on

Computing education - Volume 20 (mp.

105-111). Darlinghurst: Australian

Computer Society, Inc.

Leake, D. B. (1996). Case-based reasoning:

Experiences, lessons and future directions.

Cambridge, MA: MIT Press.

Mateis, C., Stumptner, M., & Wotawa, F. (2000). A

value-based diagnosis module for java

programs. 11th International Workshop on

Principles of Diagnosis (DX).

Nienaltowski, M., Pedroni, M., & Meyer, B. (2008).

Compiler error messages: what can help

novices? Proceedings of the 39th SIGCSE

technical symposium on Computer science

education (mp. 168-172). New York: ACM.

Reyes, R. (2002). Using Case-Based Reasoning for

Adaptive Tutoring. Doctoral Degree in

Computer Science Dissertation. Manila,

HCT-II-020 7
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

Philippines: De La Salle Univerisy-

Professional Schools Inc.

Shute, V. (2008). Focus on formative feedback.

Review of educational research, 153-189.

Sison, R. (2009). Investigating the Effect of Pair

Programming and Software Size on

Software. Proceedings of Software

Engineering Conference, 2009. APSEC '09.

Asia-Pacific, 187 - 193.

Sison, R., Numao, M., & Shimura, M. (2000).

Multistrategy Discovery and Detection of

Novice Programmer Errors. Machine

Learning, 157-180.

Suarez, M., & Sison, R. (2008). Automatic

Construction of a Bug Library for Object-

Oriented Novice Java Programmer Errors.

Proceedings of the 9th international

conference on Intelligent Tutoring Systems

(mp. 184-193). Montreal: Springer-Verlag.

Vogts, D., Calitz, A., & Greyling, J. (2008).

Comparison of the effects of professional

and pedagogical program development

environments on novice programmers.

Proceedings of the 2008 annual research

conference of the South African Institute of

Computer Scientists and Information

Technologists on IT research in developing

countries: riding the wave of technology

(mp. 286-095). New York: ACM.

Winslow, L. (1996). Programming pedagogy: A

psychological overview. SIGCSE Bull., 17-

22.

