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Abstract:  In this study, we investigated the problem of learning about other agents 

in a competitive environment. For our application domain, we used a two-player 

Snake Game.  We modeled the agent learner by observing the actions of a benchmark 

agent, a hard coded Snake Agent player which is designed and programed to be goal-

oriented and whose main purpose is to win the game. Through the use of data mining 

algorithms, our learning agent determines the function or the underlying decision 

model. Data models are automatically extracted from the data collected. The data 

mining framework that we used in this study consists of three main modules, namely 

Data Observation, Model Extraction and Model Interpretation. The framework is 

designed to build a learning agent that behaves similarly and whose game 

performance is at par with the benchmark agent. We constructed several models of 

agent learners by applying various classification techniques. Particularly, we focused 

our investigation on classification techniques that produce decision trees (J48, 

SimpleCart, BFTree, REPTree and RandomTree) and rules (JRip and PART) because 

the decision trees and rules produced via WEKA can be easily parsed and 

automatically translated to C# program codes. Our experiments show that we have 

modeled an agent that learns from the actions of a benchmark agent through 

observation and using data mining techniques.  Although overall the results indicate 

that the benchmark agent performed better than any of the algorithms investigated, 

the BFTree agent learner very closely follows its performance.  On head to head 

matches, BFTree agent learner won more games than the benchmark agent. 
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1. INTRODUCTION 
Games have long been investigated in AI as 

models of multi-agent systems. While more research 

have been devoted to multi-agents learning in 

cooperative environments, research on learning in 

competitive settings has also continuously garnered 

some attention, and in this area, every now and then, 

games are being used as application domains or 

testbeds.  Of late, there has been a surge of interest 

in using games as sources of new and challenging 

research problems (such as [Gorman, B., 2009]), 

especially in the research areas of Machine Learning 

and Data Mining.  Our research attempts to explore 
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Data Mining as an approach towards building 

competitive agents that learn through observation.    

 Our research is motivated on the premise 

that agents adapt their behavior (or learn), based on 

the observations they make on the environment and 

on the actions of other agents. According to [Hu, J. et 

al., 2001], the effectiveness of learning depends not 

only on the learning method, but also on how much 

information is available to the agent.  In the absence 

of observations, an agent has to rely on indirect 

evidence to formulate his decisions and guide his 

actions. Thus, learning becomes more difficult as well 

as limited when there is merely partial observation 

or incomplete information.   

As defined in [Princeton University, n.d.,], 

observational learning is a type of learning that 

occurs as a function of observing, retaining and 

replicating novel behavior executed by others. It can 

hasten the learning process by making use of the 

data harvested from demonstrations of a given task 

[Gorman, B., 2009].  It differs from imitation 

learning since it does not require a duplication of the 

behavior exhibited by the model. For example, an 

agent learner which observes an unwanted behavior 

and its subsequent consequences will refrain from 

that behavior [Wikipedia, 2012]. Grounded on 

rational decision making, an agent leaner assumes 

that every agent is seeking to maximize its payoff.  

Consequently, it can be said that there exists a 

functional relation between the agent’s actions and 

its local states. Through observation, an agent leaner 

can discover an underlying decision model that 

determines another agent’s action. [Hu, J. et al., 

2001]  

In this study, we defined and solved our 

research problem of learning through observation by 

using a data mining framework. We used computer 

games as our application domain. Games provide a 

rich platform for observational learning.  They 

generate vast quantities of raw behavioral data, 

which is easy to acquire and entirely devoid of noise 

as well. The data that can be harvested contain the 

exact locations of all agents and entities in the game 

world, their motions, internal states and all external 

influences. [Gorman, B., 2009] In particular, we used 

the two-player Snake Game as our testbed. In our 

competitive game environment, our agent learner is 

capable of observing other agents’ local states and 

history of actions in terms of inputs and outputs. 

Through the application of data mining techniques, 

our agent learns the underlying function or decision 

model that maps those inputs to the outputs.  

In the following sections, first, we introduce 

an instance of our application domain — a two-player 

Snake Game, which is a single-shot simultaneous-

move game, where two interacting agent/snake 

players are selfish utility maximizers. We then 

discuss a summary of the salient findings of our 

previous work that motivated us to seek better ways 

of improving the performance of our learning agent. 

Next, we present the data mining framework 

solution to our research problem.  We investigated a 

series of Data Mining classification algorithms that 

are appropriate to our application domain as well as 

possibly optimize the performance of our agent 

learner. We also performed some experiments to 

evaluate the learning performance of each algorithm. 

The results together with an analysis are presented 

in the tests and results section. 

 

2. TWO-PLAYER SNAKE GAME 
The modified two-player snake game is a two 

dimensional game, which consists of a walled 

rectangular playing arena and has a limited playing 

time. The game starts with the two snakes (players) 

placed opposite each other at both ends of the wall 

facing upwards. A snake is represented as a 1 pixel 

wide line with a head and tail; its size may increase 

or decrease, depending on the type of food it eats.  

Four types of food pellets with varying effects on the 

snake players randomly appear in the game arena. 

[Bulos, et al., 2007; Bulos, et al., 2009] 

To win the game, a player has two objectives 

to meet: (1) stay alive and (2) accumulate points by 

eating the right type of food or performing some feats 

(series of risky moves).  A player is destroyed when 

its size is reduced down to zero or when it is bumped 

by the opponent. Bumping occurs when a snake 

player’s head collides with the opponent’s tail, or 

when the player touches its own tail. The game ends 

when any of the following conditions occur: 1) the 

game time expires; 2 any player is bumped 3) any 

player is destroyed. [Bulos, et al., 2007; Bulos, et al., 

2009] 

 

3. PREVIOUS AND RELATED WORK 
In [Bulos, et al., 2007],  using the same two-

player snake game as our testbed, we investigated 

the learning performance as well as examined the 

competitive co-evolutionary characteristics of two 

Machine Learning (ML) algorithms, namely, Best 

Response (BR) and Reinforcement Learning (RL). We 

created four types of agents/snakes (players), two of 

which were hard coded (Basic and Complex) and the 

other two were constructed using BR and RL 

algorithms.  As the name suggests, the Basic agent 

possesses simple reasoning capabilities and is not 

goal-oriented. It just randomly moves around the 

game arena avoiding obstacles. Its sole purpose is to 
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avoid losing. On the other hand,   the Complex agent 

is designed and programed to be goal-oriented and its 

main purpose is to win the game. We considered it as 

our benchmark agent. 

The BR agent was created using the Best 

Response learning strategy. The Best Response 

concept is based on John Nash’s “Nash equilibrium”, 

the point where every player has selected the best 

response based on the opponents’ own strategies 

[Nash, J., 1950]. By definition, Best Response 

strategies produce the most favorable consequences 

for players, given the strategies of others [Fudenberg, 

D., & Tirole, J., 1991; Gibbons, R., 1992].  In BR 

learning, agents have perfect knowledge of the 

consequences of their decisions and actions. They 

gather information, compute for a decision, and then 

act based on that decision. They calculate the best 

strategy to a particular game scenario by using the 

information they collected on an opponent’s past 

behavior. They use multiple and even infinitely many 

observations to model their opponent. [Bulos, et al., 

2007;  Namatame, et al., 2004] 

The RL agent was created using 

Reinforcement Learning technique. Reinforcement 

Learning (RL) is a learning method that uses the 

concept of a reward system. In RL, the agent can 

learn even in an unknown environment. RL is 

unsupervised and it is achieved based on the agent’s 

own experiences and not through the use of examples 

or through instructions. It has two important 

characteristics that differentiate it from other 

learning methods. First, it employs trial-and-error. 

Through self-discovery, an agent chooses the most 

appropriate action(s) to be taken for specific 

situation(s).  It maps situations to actions--so as to 

maximize a numerical reward. Second, it also applies 

the concept of delayed reward, in which a single 

action affects not only the immediate reward, but 

also all subsequent rewards on all subsequent 

actions and situations. Simply put, an agent avoids a 

smaller but more immediate reward in favor of a 

larger but more long-term reward that will be 

collected later. [Bulos, et al., 2007;   Namatame, et 

al., 2004; Sutton, R. & Barto, A., 1998;  Weinberg, 

M., & Rosenschein, J., 2004] 

For this research, we recreated our previous 

study [Bulos, et al., 2007], and improved on it by 

conducting more in-depth and larger experiments. 

Round-robin matches (2,000 games per match) were 

played among the four agent/snakes players. In our 

findings, we have observed that both BR Agent and 

RL agents/snakes move in zigzag and circular 

motions, making them inferior to other 

agents/snakes if not trained correctly. Since they are 

learning agents, their performance progresses 

overtime. Simply put, they slightly improve their 

behavior by playing more games through training.  

The results of the newly conducted round-

robin matches are shown in table 1.  Judging by 

results, we obtained similar findings with that of our 

previous work [Bulos, et al., 2007]. In both studies, 

we found out that the behavior of RL as a learning 

algorithm is comparatively better than BR.  

However, when compared against our benchmark 

agent (Complex Agent), the two machine learning 

algorithms (RL and BR) are inferior.  

Because of the disappointing performance of 

the BR and RL algorithms against the Complex 

Agent, we felt the need to explore other solutions to 

adaptive learning agents in competitive 

environments. In [Bulos, et al., 2009], we attempted 

to explore a Data Mining (DM) approach/solution, 

particularly the use of Classification Mining. Our 

first task was to engineer the input data 

(observations) into a form suitable for classification 

mining. Primarily, this involved attribute selection 

which was intended to eliminate irrelevant attributes 

and consequently improve the performance of the 

learning scheme.  To aid us in this endeavor, we 

created five types of DM agents, each exhibiting 

some specific kind of behavior. 

  

Table 1.  Performance Ranking of  ML ALGOS 

Snake  Win Draw Loss 

Complex 5186 86 728 

RL 2236 629 3135 

BR 2088 401 3511 

Basic  1628 608 3764 

 

These are the Dumb agent, Playing Safe 

agent, Hungry agent, Picky agent and Complex-Like 

agent. Each type of DM agent is characterized (and 

distinguished from the other agents) by the types of 

attributes that were selected. These agents were 

created using J48 classification algorithm of WEKA.  

To evaluate and compare their performance, 

each DM agent played 5,000 games each against 

three opponents namely, RL Agent (which in initial 

the study [Bulos, et al., 2007] was found to be better 

than Best Response), Basic Agent and Complex 

Agent.  In our findings [Bulos, et al., 2009],   we 

observed that effective classification rule mining does 

not solely rely on collection and processing of 

voluminous data to produce a good decision tree.  
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This study has shown that effective classification 

rule mining is heavily dependent on the type of 

attributes selected. Excess and irrelevant attributes 

may create unnecessary noise which may spoil the 

results of the analysis while too few attributes may 

yield incomplete information. We have observed that 

improper attribute selection causes the performance 

of a learning scheme such as J48 to degrade. 

Based from the results of the experiments 

conducted in [Bulos, et al., 2009], the Complex-Like 

agent performed better than any of the other four 

DM agents. It won 88.18% of its 5,000 games against 

the RL agent, won 85.40% of its 5,000 games against 

the Basic agent, but won only 44.22% of its 5,000 

games against the Complex agent.  

Once again, because of the inferior 

performance of our data mining agent (Complex-Like 

agent using J48) against the benchmark agent 

(Complex Agent), we are motivated to seek other 

ways of improving its learning behavior. In the next 

section we present our improved data mining 

framework.  We investigate a series of Data Mining 

classification algorithms (besides J48) that are 

applicable to our domain and that may enhance the 

learning performance of our agent.  

 

4. GENRE PREDICTION USING SQL 
In our two-player competitive game 

environment, the agents/snakes are capable of 

observing their opponents’ local states and history of 

actions in terms of inputs and outputs. Through the 

use of data mining algorithms, our learning agent 

determines the function or the underlying decision 

model that maps those inputs to the outputs. The 

observations captured and stored during matches are 

used to discover useful patterns. Simply put, data 

models are automatically extracted from the data 

collected. The data mining framework that we used 

in this study is depicted in Fig. 1. It consists of three 

main modules, namely Data Observation, Model 

Extraction and Model Interpretation. The framework 

is designed to build a learning agent that behaves 

similarly and whose game performance is at par with 

the Complex agent.  

 

 
Fig. 1. Data Mining Framework 

 
4.1 Data Observation  

In our data mining framework, we assume 

that agents/snakes have perfect knowledge of their 

environment as well as the consequences of their 

decisions and actions. Such knowledge is obtained 

through observation. In the Data Observation 

module, the set of relevant data to be used in 

training phase (or learning step) is captured and 

stored. In building the training data, we observed a 

total of 24,997 matches   between two Complex 

Agents. The Complex Agent is our benchmark agent 

and our research objective is to model an agent 

learner by observing the actions of a victorious 

(winner) Complex Agent. Unlike in our previous 

study [Bulos, et al., 2009], this time we restricted our 

observations (data collection) to those games won and 

considered only those positive actions that 

contributed to the victory. Data on games that were 

drawn or lost, as well as trivial actions, were 

considered irrelevant and thus eliminated from the 

training set. 

According to [Witten, I. et. al., 2011], 

preparation of the training set for a data mining 

undertaking usually consumes the bulk of the effort 

invested in the entire data mining process. However, 

our application domain (two-player snake game) 

automatically generates vast quantities of raw 

behavioral data which is easy to acquire and entirely 

devoid of noise. In other words, our choice of 

application domain allowed us to do minimal data 



 

HCT-II-019 5 
Proceedings of the DLSU Research Congress Vol. 3 2015 

   Presented at the DLSU Research Congress 2015 

De La Salle University, Manila, Philippines 

March 2-4, 2015 

 

pre-processing.  Preparation of the training datasets 

was confined to attribute selection and creation of 

the ARFF file, which is a standard way of 

representing datasets that consist of independent, 

unordered instances and do not involve relationships 

among instances. [Witten, I. et. al., 2011]    

 

4.2 Model Extraction  
Essentially, building a decision model for our 

learning agent involves the application of data 

mining techniques using the dataset (ARFF file) 

constructed in the Data Observation module as 

training set. We used WEKA as our data mining 

workbench.  It is open source software issued under 

the GNU General Public License. It has an 

unparalleled range of machine learning algorithms 

and related techniques. It now includes many new 

filters, attributes selection algorithms, and 

components such as converters for different file 

formats and parameter optimization algorithms. 

[Hall, M. et al., 2009; Witten, I. et. al., 2011]  

 Among the many data mining algorithms 

embodied in WEKA, we exclusively focused our 

investigation on classification techniques that 

produce decision trees and rule models. Rules and 

decision trees generated via WEKA can be easily 

parsed and converted to C# program codes.  They 

constitute the decision model of the agent learner 

and the corresponding C# codes are used to 

construct/program the agent/snake player. 

Classification techniques in data mining 

involve the analysis of a set of training data and 

construction of a model for each class based on the 

attributes of the given data. Usually, a decision tree 

or a set of classification rules are generated by the 

process.  The objective of classification is to organize 

and categorize data into distinct classes. [Han, J. et 

al., 2012]   

The WEKA data mining or machine learning 

algorithms that we used in our study are J48, 

SimpleCart, BFTree, REPTree, RandomTree, JRip 

and PART.  The first five algorithms produce 

decision trees while the last two generate rules. The 

J48 algorithm is the implementation of C4.5 in 

WEKA. C4.5 is a classification algorithm that was 

developed   by Ross Quinlan. It is an extension of the 

ID3. It builds decision trees from a training dataset 

by applying information entropy. [Witten, I. et. al., 

2011]  

SimpleCart employs the minimal cost-

complexity pruning strategy. It is named after the 

CART (classification and regression tree) learner 

that initiated this strategy [Breiman, et al., 1984].  

However it provides none of the other features of 

CART. In SimpleCart, the minimum number of 

instances per leaf, the percentage of training data 

used to construct the tree, and the number of cross-

validation folds used in the pruning procedure can be 

set. [Witten, I. et. al., 2011]  

BFTree builds a decision tree using a 

breadth-first expansion of nodes rather than the 

depth-first expansion used by standard decision tree 

learners (such as C4.5). It contains pre- and 

postpruning options which are based on finding the 

best number of expansions to use via cross-validation 

on the training data. While fully grown trees are the 

same for breadth-first and depth-first algorithms, the 

pruning mechanism used by BFTree will yield a 

different pruned tree structure than that produced 

by depth-first methods. [Witten, I. et. al., 2011]   

REPTree generates a decision or regression 

tree utilizing information gain/variance reduction. It 

prunes the decision tree using reduced-error pruning. 

Optimized for speed, it only sorts values for numeric 

attributes once. Like C4.5, it handles missing values 

by splitting instances into pieces. In REPTree, the 

minimum number of instances per leaf, maximum 

tree depth (useful when boosting trees), minimum 

proportion of training set variance for a split 

(numeric classes only), and number of folds for 

pruning can be set.  RandomTree constructs a tree 

that considers a given number of random features at 

each node without performing pruning.  [Witten, I. 

et. al., 2011]  

JRip is an algorithm for fast, effective rule 

induction. It implements RIPPER [Cohen, W. W., 

1995], an acronym for repeated incremental pruning 

to produce error reduction. It also performs heuristic 

global optimization of the rule set. PART obtains 

rules from partial decision. It constructs the tree 

using C4.5’s heuristics with the same user-defined 

parameters as   J4.8. [Witten, I. et. al., 2011]   

 

4.3 Model Interpreter 
The Model Interpreter module takes a 

decision tree or set of rules (generated via WEKA) as 

input, parses it and then automatically converts it to 

C# program codes. This program code is embedded 

when constructing or programming the agent/snake 

player.  

 

5. TESTS AND RESULTS 
To evaluate and measure the performance of 

the classification algorithms, we conducted round-

robin matches among them including the Complex 

agent, which served as our benchmark agent.  We 

grouped the agent learners into two: (1) decision tree 

and (2) rules. Each match consisted of 2,000 games.  
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We ranked the performance of each algorithm (by 

number of points) and the rankings are shown in 

tables 2  (for decision tree algorithms) and 3 (for 

rules algorithms).  We gave 3 points for a win, 1 point 

for a draw and no points for a loss. Among the 

decision tree learners, BFTree has the best 

performance followed by the J48. Both techniques 

registered higher number of wins than the Complex 

agent. The other decision tree learners were inferior 

compared to the Complex Agent. Among the rules 

learners, both JRip and PART ranked below the 

Complex Agent. JRip performed better than PART. 

 

Table 2.  Ranking of Performance of DECISION 

TREES Algorithms 

Snake Type Win Draw Loss Points 

BFTree 6739 513 2748 20730 

J48 6702 482  2816 20588 

Complex 6645  514  2841 20449 

Simple Cart 6560 562 2878 20242 

REP 986 826 8188 3784 

Random 545 706 8749 2341 

 

We then conducted round-robin matches 

among Complex agent, BFTree (winner in group 1), 

PART (which performed better than JRip in group 2), 

and Reinforcement Learning (RL) agent (which 

performed better than Best-Response).  The Complex 

agent was ranked highest (see table 4) followed 

closely by BFTree.  

However, looking at the head to head 

matches held between the Complex agent and 

BFTree, BFTree performed better. It won more 

games against the Complex agent (935 wins vs 926 

wins). 

 

Table 3.  Ranking of Performance of  RULES  

Algorithms 

Snake Win Draw Loss Points 

Complex 2425 360 1215 7635 

PART 1516 417 2067 4965 

JRip 1467 407 2126 4808 

 

Table 4.  Ranking of Performance of  Group Winners  

Snake Win Loss Draw Points 

Complex 4032 269 1699 12365 

BFTree 3902 318 1780 12024 

PART 2522 367 2952 7933 

RL 803 210 4987 2619 

 

 

 

6. CONCLUSSION  
In this study, we investigated the problem of 

learning about other agents in a competitive 

environment. We modeled the agent learner by 

observing the actions of a benchmark agent (Complex 

Agent); and then we used a data mining framework 

to determine the underlying decision model that the 

benchmark agent uses when mapping its inputs 

(observations) into outputs (actions). That is, we used 

our observations on the benchmark agent to train our 

agent learners.  

We constructed several models of agent 

learners by applying various classification 

techniques. Particularly, we focused our 

investigation on classification techniques that 

produce decision trees (J48, SimpleCart, BFTree, 

REPTree and RandomTree) and rules (JRip and 

PART) because the decision trees and rules produced 

via WEKA can be easily parsed and automatically 

translated to C# program codes. 

Our experiments show that we have modeled 

an agent that learns from the actions of a benchmark 

agent through observation and using data mining 

techniques.  Although overall the results indicate 

that the benchmark agent performed better than any 

of the algorithms investigated, the BFTree agent 

learner very closely follows its performance.  On head 

to head matches, BFTree agent learner won more 

games than the benchmark agent. 

For our future research, we would explore 

the use of association mining to model our agent 

learners. 
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