

HCT-II-019 1
Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

Learning in Competitive Environments through Observation: A Data

Mining Approach

Remedios de Dios Bulos, Mauro F. Arce, Allen Guarnes, Marvin J. Limson, and Michelle Ormoc

De La Salle University
remedios.bulos@dlsu.edu.ph or remedisdedios@yahoo.com

Abstract: In this study, we investigated the problem of learning about other agents

in a competitive environment. For our application domain, we used a two-player

Snake Game. We modeled the agent learner by observing the actions of a benchmark

agent, a hard coded Snake Agent player which is designed and programed to be goal-

oriented and whose main purpose is to win the game. Through the use of data mining

algorithms, our learning agent determines the function or the underlying decision

model. Data models are automatically extracted from the data collected. The data

mining framework that we used in this study consists of three main modules, namely

Data Observation, Model Extraction and Model Interpretation. The framework is

designed to build a learning agent that behaves similarly and whose game

performance is at par with the benchmark agent. We constructed several models of

agent learners by applying various classification techniques. Particularly, we focused

our investigation on classification techniques that produce decision trees (J48,

SimpleCart, BFTree, REPTree and RandomTree) and rules (JRip and PART) because

the decision trees and rules produced via WEKA can be easily parsed and

automatically translated to C# program codes. Our experiments show that we have

modeled an agent that learns from the actions of a benchmark agent through

observation and using data mining techniques. Although overall the results indicate

that the benchmark agent performed better than any of the algorithms investigated,

the BFTree agent learner very closely follows its performance. On head to head

matches, BFTree agent learner won more games than the benchmark agent.

Key Words: data mining; classification; machine learning; observational learning;

WEKA

1. INTRODUCTION
Games have long been investigated in AI as

models of multi-agent systems. While more research

have been devoted to multi-agents learning in

cooperative environments, research on learning in

competitive settings has also continuously garnered

some attention, and in this area, every now and then,

games are being used as application domains or

testbeds. Of late, there has been a surge of interest

in using games as sources of new and challenging

research problems (such as [Gorman, B., 2009]),

especially in the research areas of Machine Learning

and Data Mining. Our research attempts to explore

mailto:remedios.bulos@dlsu.edu.ph
mailto:remedisdedios@yahoo.com

HCT-II-019 2
Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

Data Mining as an approach towards building

competitive agents that learn through observation.

 Our research is motivated on the premise

that agents adapt their behavior (or learn), based on

the observations they make on the environment and

on the actions of other agents. According to [Hu, J. et

al., 2001], the effectiveness of learning depends not

only on the learning method, but also on how much

information is available to the agent. In the absence

of observations, an agent has to rely on indirect

evidence to formulate his decisions and guide his

actions. Thus, learning becomes more difficult as well

as limited when there is merely partial observation

or incomplete information.

As defined in [Princeton University, n.d.,],

observational learning is a type of learning that

occurs as a function of observing, retaining and

replicating novel behavior executed by others. It can

hasten the learning process by making use of the

data harvested from demonstrations of a given task

[Gorman, B., 2009]. It differs from imitation

learning since it does not require a duplication of the

behavior exhibited by the model. For example, an

agent learner which observes an unwanted behavior

and its subsequent consequences will refrain from

that behavior [Wikipedia, 2012]. Grounded on

rational decision making, an agent leaner assumes

that every agent is seeking to maximize its payoff.

Consequently, it can be said that there exists a

functional relation between the agent’s actions and

its local states. Through observation, an agent leaner

can discover an underlying decision model that

determines another agent’s action. [Hu, J. et al.,

2001]

In this study, we defined and solved our

research problem of learning through observation by

using a data mining framework. We used computer

games as our application domain. Games provide a

rich platform for observational learning. They

generate vast quantities of raw behavioral data,

which is easy to acquire and entirely devoid of noise

as well. The data that can be harvested contain the

exact locations of all agents and entities in the game

world, their motions, internal states and all external

influences. [Gorman, B., 2009] In particular, we used

the two-player Snake Game as our testbed. In our

competitive game environment, our agent learner is

capable of observing other agents’ local states and

history of actions in terms of inputs and outputs.

Through the application of data mining techniques,

our agent learns the underlying function or decision

model that maps those inputs to the outputs.

In the following sections, first, we introduce

an instance of our application domain — a two-player

Snake Game, which is a single-shot simultaneous-

move game, where two interacting agent/snake

players are selfish utility maximizers. We then

discuss a summary of the salient findings of our

previous work that motivated us to seek better ways

of improving the performance of our learning agent.

Next, we present the data mining framework

solution to our research problem. We investigated a

series of Data Mining classification algorithms that

are appropriate to our application domain as well as

possibly optimize the performance of our agent

learner. We also performed some experiments to

evaluate the learning performance of each algorithm.

The results together with an analysis are presented

in the tests and results section.

2. TWO-PLAYER SNAKE GAME
The modified two-player snake game is a two

dimensional game, which consists of a walled

rectangular playing arena and has a limited playing

time. The game starts with the two snakes (players)

placed opposite each other at both ends of the wall

facing upwards. A snake is represented as a 1 pixel

wide line with a head and tail; its size may increase

or decrease, depending on the type of food it eats.

Four types of food pellets with varying effects on the

snake players randomly appear in the game arena.

[Bulos, et al., 2007; Bulos, et al., 2009]

To win the game, a player has two objectives

to meet: (1) stay alive and (2) accumulate points by

eating the right type of food or performing some feats

(series of risky moves). A player is destroyed when

its size is reduced down to zero or when it is bumped

by the opponent. Bumping occurs when a snake

player’s head collides with the opponent’s tail, or

when the player touches its own tail. The game ends

when any of the following conditions occur: 1) the

game time expires; 2 any player is bumped 3) any

player is destroyed. [Bulos, et al., 2007; Bulos, et al.,

2009]

3. PREVIOUS AND RELATED WORK
In [Bulos, et al., 2007], using the same two-

player snake game as our testbed, we investigated

the learning performance as well as examined the

competitive co-evolutionary characteristics of two

Machine Learning (ML) algorithms, namely, Best

Response (BR) and Reinforcement Learning (RL). We

created four types of agents/snakes (players), two of

which were hard coded (Basic and Complex) and the

other two were constructed using BR and RL

algorithms. As the name suggests, the Basic agent

possesses simple reasoning capabilities and is not

goal-oriented. It just randomly moves around the

game arena avoiding obstacles. Its sole purpose is to

HCT-II-019 3
Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

avoid losing. On the other hand, the Complex agent

is designed and programed to be goal-oriented and its

main purpose is to win the game. We considered it as

our benchmark agent.

The BR agent was created using the Best

Response learning strategy. The Best Response

concept is based on John Nash’s “Nash equilibrium”,

the point where every player has selected the best

response based on the opponents’ own strategies

[Nash, J., 1950]. By definition, Best Response

strategies produce the most favorable consequences

for players, given the strategies of others [Fudenberg,

D., & Tirole, J., 1991; Gibbons, R., 1992]. In BR

learning, agents have perfect knowledge of the

consequences of their decisions and actions. They

gather information, compute for a decision, and then

act based on that decision. They calculate the best

strategy to a particular game scenario by using the

information they collected on an opponent’s past

behavior. They use multiple and even infinitely many

observations to model their opponent. [Bulos, et al.,

2007; Namatame, et al., 2004]

The RL agent was created using

Reinforcement Learning technique. Reinforcement

Learning (RL) is a learning method that uses the

concept of a reward system. In RL, the agent can

learn even in an unknown environment. RL is

unsupervised and it is achieved based on the agent’s

own experiences and not through the use of examples

or through instructions. It has two important

characteristics that differentiate it from other

learning methods. First, it employs trial-and-error.

Through self-discovery, an agent chooses the most

appropriate action(s) to be taken for specific

situation(s). It maps situations to actions--so as to

maximize a numerical reward. Second, it also applies

the concept of delayed reward, in which a single

action affects not only the immediate reward, but

also all subsequent rewards on all subsequent

actions and situations. Simply put, an agent avoids a

smaller but more immediate reward in favor of a

larger but more long-term reward that will be

collected later. [Bulos, et al., 2007; Namatame, et

al., 2004; Sutton, R. & Barto, A., 1998; Weinberg,

M., & Rosenschein, J., 2004]

For this research, we recreated our previous

study [Bulos, et al., 2007], and improved on it by

conducting more in-depth and larger experiments.

Round-robin matches (2,000 games per match) were

played among the four agent/snakes players. In our

findings, we have observed that both BR Agent and

RL agents/snakes move in zigzag and circular

motions, making them inferior to other

agents/snakes if not trained correctly. Since they are

learning agents, their performance progresses

overtime. Simply put, they slightly improve their

behavior by playing more games through training.

The results of the newly conducted round-

robin matches are shown in table 1. Judging by

results, we obtained similar findings with that of our

previous work [Bulos, et al., 2007]. In both studies,

we found out that the behavior of RL as a learning

algorithm is comparatively better than BR.

However, when compared against our benchmark

agent (Complex Agent), the two machine learning

algorithms (RL and BR) are inferior.

Because of the disappointing performance of

the BR and RL algorithms against the Complex

Agent, we felt the need to explore other solutions to

adaptive learning agents in competitive

environments. In [Bulos, et al., 2009], we attempted

to explore a Data Mining (DM) approach/solution,

particularly the use of Classification Mining. Our

first task was to engineer the input data

(observations) into a form suitable for classification

mining. Primarily, this involved attribute selection

which was intended to eliminate irrelevant attributes

and consequently improve the performance of the

learning scheme. To aid us in this endeavor, we

created five types of DM agents, each exhibiting

some specific kind of behavior.

Table 1. Performance Ranking of ML ALGOS

Snake Win Draw Loss

Complex 5186 86 728

RL 2236 629 3135

BR 2088 401 3511

Basic 1628 608 3764

These are the Dumb agent, Playing Safe

agent, Hungry agent, Picky agent and Complex-Like

agent. Each type of DM agent is characterized (and

distinguished from the other agents) by the types of

attributes that were selected. These agents were

created using J48 classification algorithm of WEKA.

To evaluate and compare their performance,

each DM agent played 5,000 games each against

three opponents namely, RL Agent (which in initial

the study [Bulos, et al., 2007] was found to be better

than Best Response), Basic Agent and Complex

Agent. In our findings [Bulos, et al., 2009], we

observed that effective classification rule mining does

not solely rely on collection and processing of

voluminous data to produce a good decision tree.

HCT-II-019 4
Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

This study has shown that effective classification

rule mining is heavily dependent on the type of

attributes selected. Excess and irrelevant attributes

may create unnecessary noise which may spoil the

results of the analysis while too few attributes may

yield incomplete information. We have observed that

improper attribute selection causes the performance

of a learning scheme such as J48 to degrade.

Based from the results of the experiments

conducted in [Bulos, et al., 2009], the Complex-Like

agent performed better than any of the other four

DM agents. It won 88.18% of its 5,000 games against

the RL agent, won 85.40% of its 5,000 games against

the Basic agent, but won only 44.22% of its 5,000

games against the Complex agent.

Once again, because of the inferior

performance of our data mining agent (Complex-Like

agent using J48) against the benchmark agent

(Complex Agent), we are motivated to seek other

ways of improving its learning behavior. In the next

section we present our improved data mining

framework. We investigate a series of Data Mining

classification algorithms (besides J48) that are

applicable to our domain and that may enhance the

learning performance of our agent.

4. GENRE PREDICTION USING SQL
In our two-player competitive game

environment, the agents/snakes are capable of

observing their opponents’ local states and history of

actions in terms of inputs and outputs. Through the

use of data mining algorithms, our learning agent

determines the function or the underlying decision

model that maps those inputs to the outputs. The

observations captured and stored during matches are

used to discover useful patterns. Simply put, data

models are automatically extracted from the data

collected. The data mining framework that we used

in this study is depicted in Fig. 1. It consists of three

main modules, namely Data Observation, Model

Extraction and Model Interpretation. The framework

is designed to build a learning agent that behaves

similarly and whose game performance is at par with

the Complex agent.

Fig. 1. Data Mining Framework

4.1 Data Observation

In our data mining framework, we assume

that agents/snakes have perfect knowledge of their

environment as well as the consequences of their

decisions and actions. Such knowledge is obtained

through observation. In the Data Observation

module, the set of relevant data to be used in

training phase (or learning step) is captured and

stored. In building the training data, we observed a

total of 24,997 matches between two Complex

Agents. The Complex Agent is our benchmark agent

and our research objective is to model an agent

learner by observing the actions of a victorious

(winner) Complex Agent. Unlike in our previous

study [Bulos, et al., 2009], this time we restricted our

observations (data collection) to those games won and

considered only those positive actions that

contributed to the victory. Data on games that were

drawn or lost, as well as trivial actions, were

considered irrelevant and thus eliminated from the

training set.

According to [Witten, I. et. al., 2011],

preparation of the training set for a data mining

undertaking usually consumes the bulk of the effort

invested in the entire data mining process. However,

our application domain (two-player snake game)

automatically generates vast quantities of raw

behavioral data which is easy to acquire and entirely

devoid of noise. In other words, our choice of

application domain allowed us to do minimal data

HCT-II-019 5
Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

pre-processing. Preparation of the training datasets

was confined to attribute selection and creation of

the ARFF file, which is a standard way of

representing datasets that consist of independent,

unordered instances and do not involve relationships

among instances. [Witten, I. et. al., 2011]

4.2 Model Extraction
Essentially, building a decision model for our

learning agent involves the application of data

mining techniques using the dataset (ARFF file)

constructed in the Data Observation module as

training set. We used WEKA as our data mining

workbench. It is open source software issued under

the GNU General Public License. It has an

unparalleled range of machine learning algorithms

and related techniques. It now includes many new

filters, attributes selection algorithms, and

components such as converters for different file

formats and parameter optimization algorithms.

[Hall, M. et al., 2009; Witten, I. et. al., 2011]

 Among the many data mining algorithms

embodied in WEKA, we exclusively focused our

investigation on classification techniques that

produce decision trees and rule models. Rules and

decision trees generated via WEKA can be easily

parsed and converted to C# program codes. They

constitute the decision model of the agent learner

and the corresponding C# codes are used to

construct/program the agent/snake player.

Classification techniques in data mining

involve the analysis of a set of training data and

construction of a model for each class based on the

attributes of the given data. Usually, a decision tree

or a set of classification rules are generated by the

process. The objective of classification is to organize

and categorize data into distinct classes. [Han, J. et

al., 2012]

The WEKA data mining or machine learning

algorithms that we used in our study are J48,

SimpleCart, BFTree, REPTree, RandomTree, JRip

and PART. The first five algorithms produce

decision trees while the last two generate rules. The

J48 algorithm is the implementation of C4.5 in

WEKA. C4.5 is a classification algorithm that was

developed by Ross Quinlan. It is an extension of the

ID3. It builds decision trees from a training dataset

by applying information entropy. [Witten, I. et. al.,

2011]

SimpleCart employs the minimal cost-

complexity pruning strategy. It is named after the

CART (classification and regression tree) learner

that initiated this strategy [Breiman, et al., 1984].

However it provides none of the other features of

CART. In SimpleCart, the minimum number of

instances per leaf, the percentage of training data

used to construct the tree, and the number of cross-

validation folds used in the pruning procedure can be

set. [Witten, I. et. al., 2011]

BFTree builds a decision tree using a

breadth-first expansion of nodes rather than the

depth-first expansion used by standard decision tree

learners (such as C4.5). It contains pre- and

postpruning options which are based on finding the

best number of expansions to use via cross-validation

on the training data. While fully grown trees are the

same for breadth-first and depth-first algorithms, the

pruning mechanism used by BFTree will yield a

different pruned tree structure than that produced

by depth-first methods. [Witten, I. et. al., 2011]

REPTree generates a decision or regression

tree utilizing information gain/variance reduction. It

prunes the decision tree using reduced-error pruning.

Optimized for speed, it only sorts values for numeric

attributes once. Like C4.5, it handles missing values

by splitting instances into pieces. In REPTree, the

minimum number of instances per leaf, maximum

tree depth (useful when boosting trees), minimum

proportion of training set variance for a split

(numeric classes only), and number of folds for

pruning can be set. RandomTree constructs a tree

that considers a given number of random features at

each node without performing pruning. [Witten, I.

et. al., 2011]

JRip is an algorithm for fast, effective rule

induction. It implements RIPPER [Cohen, W. W.,

1995], an acronym for repeated incremental pruning

to produce error reduction. It also performs heuristic

global optimization of the rule set. PART obtains

rules from partial decision. It constructs the tree

using C4.5’s heuristics with the same user-defined

parameters as J4.8. [Witten, I. et. al., 2011]

4.3 Model Interpreter
The Model Interpreter module takes a

decision tree or set of rules (generated via WEKA) as

input, parses it and then automatically converts it to

C# program codes. This program code is embedded

when constructing or programming the agent/snake

player.

5. TESTS AND RESULTS
To evaluate and measure the performance of

the classification algorithms, we conducted round-

robin matches among them including the Complex

agent, which served as our benchmark agent. We

grouped the agent learners into two: (1) decision tree

and (2) rules. Each match consisted of 2,000 games.

HCT-II-019 6
Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

We ranked the performance of each algorithm (by

number of points) and the rankings are shown in

tables 2 (for decision tree algorithms) and 3 (for

rules algorithms). We gave 3 points for a win, 1 point

for a draw and no points for a loss. Among the

decision tree learners, BFTree has the best

performance followed by the J48. Both techniques

registered higher number of wins than the Complex

agent. The other decision tree learners were inferior

compared to the Complex Agent. Among the rules

learners, both JRip and PART ranked below the

Complex Agent. JRip performed better than PART.

Table 2. Ranking of Performance of DECISION

TREES Algorithms

Snake Type Win Draw Loss Points

BFTree 6739 513 2748 20730

J48 6702 482 2816 20588

Complex 6645 514 2841 20449

Simple Cart 6560 562 2878 20242

REP 986 826 8188 3784

Random 545 706 8749 2341

We then conducted round-robin matches

among Complex agent, BFTree (winner in group 1),

PART (which performed better than JRip in group 2),

and Reinforcement Learning (RL) agent (which

performed better than Best-Response). The Complex

agent was ranked highest (see table 4) followed

closely by BFTree.

However, looking at the head to head

matches held between the Complex agent and

BFTree, BFTree performed better. It won more

games against the Complex agent (935 wins vs 926

wins).

Table 3. Ranking of Performance of RULES

Algorithms

Snake Win Draw Loss Points

Complex 2425 360 1215 7635

PART 1516 417 2067 4965

JRip 1467 407 2126 4808

Table 4. Ranking of Performance of Group Winners

Snake Win Loss Draw Points

Complex 4032 269 1699 12365

BFTree 3902 318 1780 12024

PART 2522 367 2952 7933

RL 803 210 4987 2619

6. CONCLUSSION
In this study, we investigated the problem of

learning about other agents in a competitive

environment. We modeled the agent learner by

observing the actions of a benchmark agent (Complex

Agent); and then we used a data mining framework

to determine the underlying decision model that the

benchmark agent uses when mapping its inputs

(observations) into outputs (actions). That is, we used

our observations on the benchmark agent to train our

agent learners.

We constructed several models of agent

learners by applying various classification

techniques. Particularly, we focused our

investigation on classification techniques that

produce decision trees (J48, SimpleCart, BFTree,

REPTree and RandomTree) and rules (JRip and

PART) because the decision trees and rules produced

via WEKA can be easily parsed and automatically

translated to C# program codes.

Our experiments show that we have modeled

an agent that learns from the actions of a benchmark

agent through observation and using data mining

techniques. Although overall the results indicate

that the benchmark agent performed better than any

of the algorithms investigated, the BFTree agent

learner very closely follows its performance. On head

to head matches, BFTree agent learner won more

games than the benchmark agent.

For our future research, we would explore

the use of association mining to model our agent

learners.

7. REFERENCES
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J., (1984),

Classification and Regression Trees. 1984. Monterey, CA:

Wadsworth.

HCT-II-019 7
Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

Bulos, R. Amurao, R., de Jesus, J., Gallardo, A. and Moreno, M.,

(2007), Adaptive Co-evolution using Reinforcement Learning,

Proceedings HNICEM, 2007.

Bulos, R., Cheng, T., Cua, J. and Opaco, C., (2009), Classification

Rule Mining as a Learning Algorithm in Competitive

Environments, Proceedings of the 11th Science and Technology

Congress, 2009.

Cohen, W. W., (1995), Fast effective rule induction. In A. Prieditis, &

S. Russell (Eds.), Proceedings of the Twelfth International

Conference on Machine Learning, (pp. 115–123), 1995

Fudenberg, D., Tirole, J., (1991), Game Theory, 1991, Cambridge

MA: MIT Press

Gibbons, R.,(1992), A Primer in Game Theory, 1992, Harvester-

Wheatsheaf.

Gorman, B., (2009), Imitation Learning through Games: Theory,

Implementation and Evaluation, Dublin: PhD Dissertation,

2009

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and

Witten, I. H., (2009), The WEKA Data Mining Software: An

Update; SIGKDD Explorations, Volume 11, Issue 1., 2009,

Official site: http://www.cs.waikato.ac.nz/ml/weka/

Han, J., Kamber, M. and Pei, J., (2012), Data Mining: Concepts and

Techniques 3rd Edition, Morgan Kaufmann, 2012.

Hu, J. and Weliman, M. P., (2001), Learning about other agents in a

dynamic multiagent system. Journal of Cognitive Systems

Research, 2(1), pp. 67-69, 2001.

Namatame, A. Murakami, Y., and Sato, N., (2004), Co-evolutionary

Learning in Strategic Environments. Co-evolutionary Learning

in Strategic Environments, World Scientific, pp. 1-19, 2004

[online]

Nash, J., (1950), Equilibrium points in n-person games, Proceedings

of the National Academy of Sciences 36(1):48-49, 1950.

Princeton University. (n.d.), Observational learning. [Online]

Accessed 11 July 2014.

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Obser

vational_learning.html

Sutton, R. & Barto, A., (1998), Reinforcement Learning: An

Introduction. Cambridge, MA: MIT Press. 1998

Weinberg, M., and Rosenschein, J., (2004), Best-Response

Multiagent Learning in Non-Stationary Environments.

Autonomous Agents and Multiagent Systems, 2004. AAMAS

2004. Proceedings of the Third International Joint Conference

on, pp. 506 – 513, New York, NY, USA

Wikipedia, Observational learning. (2012). [Online] Accessed 11 July

2014. http://en.wikipedia.org/wiki/Observational_learning

Witten, I. H., Frank, E. and Wall, A. H., (2011), Data Mining

Practical Learning Tools and Techniques, Third Edition, 2011,

MA, USA: Morgan Kaufmann

