

HCT-II-013 1
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

Local Area Network Analyzer with Multivendor Support without Agents

using Switches (LLAMAS)
Kristen Cyril B. Aquino1, Geanne Ross L. Franco2, Carlos Javier M. Javier3,

Ria Bianca V. Santiago4, Dannison Heinrich O. Yao5
1,2,3,4,5 Computer Technology Department, De La Salle University, 2401 Taft Ave., Manila

ABSTRACT - Network analyzers are software that are used to monitor network

performance and activity. They make it easier to trace and find problems such

as network congestion and inappropriate usage, within the network, or give a

general outlook on its health. However, network analyzers are part of a larger

scale of applications, known as network managements systems. Aside from

network monitoring, they allow centralized configuration of the network

devices being handled. Most of the network analyzers and management

systems available in the market nowadays either lack multi-vendor support, or

they require agents to be installed on the hosts. With these flaws in mind, the

study aims to develop a network analyzer that can trace packets in the network

without strict restrictions on the vendor of the devices, and without the need

for agents to be installed on hosts in the network. As such, the study has

successfully researched, implemented, and tested solutions for the present

insufficiencies of the technologies addressed in an attempt to eliminate some

current limitations to network management.

Keywords - Managed switch; alias; telnet; MAC address

1. INTRODUCTION

In today’s information age, a primary concern
of many companies, businesses, and industries is how
to secure and manage their networks. A well-managed
network is a key asset for storage and communication.
In terms of storage, what used to occupy papers, files,
and cabinets are currently being migrated, if not
already fully transferred, to electronic databases. In
order for employees to have access to such data
efficiently, networks are needed. This need links with
communication. Ensuring all aspects of the system
have a connection to other assets is essential for any
data-centered workflow. Large networks like this will,
from time to time, experience problems such as
bottlenecks and congestions. For such reasons,
solutions have been released in the market, to help
monitor and optimize network performance. Network
analyzers are made in order to make tracing the
sources of these problems easier.

With that said, there is a lack of a switch-
based network analyzer that offers important data
regarding the network without its core functionalities
being dependent on the vendor of the devices in
the network, and without the need for additional

small programs, called agents, to ensue network
monitoring. The study’s end goal is a system that
monitors a local area network and provides relevant
information utilizing captured packets and user-
defined aliases for convenient reporting without strict
restrictions on the vendors of the devices in use, and
without the need for agents to be installed on the host
machines.

2. SYSTEM DESIGN

The design of the system divides everything
into a set of related tasks, with each division termed a
“module”. Each module represents a Python script, or
a collection of two or more (also known as sub-
modules), and only one database with two tables is
needed. The entire system is composed of five main
modules: MAC Address Manager, Alias Manager,
Packet Manager, Report Generator, and User
Interface.

A. MAC Address Manager

The MAC Address Manager is responsible for
all communication with the switch in the LAN to be
monitored. The module consists of two sub-modules:

HCT-II-013 2
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

the Connection Sub-module and the Parser Sub-
module.

1. Connection Sub-module

The module connects to a switch via telnet
using the telnetlib Python library [3]. In conjunction
with the User Interface, it allows the user to connect
to each switch in the network, though each switch
must be connected to individually. The user needs to
input the switch’s name (a user-defined string for
identification purposes, especially among packets with
similar port numbers but coming from different
switches; optional), IP address, and the passwords (if
there is more than one needed) of the switch in the
provided areas in the user interface, as these are the
parameters the system will use when establishing the
telnet connection. In addition, a text field is provided
for the user to input the series of commands needed to
bring out the MAC address table in the specified
switch. The system saves the latest entered
information for future use, specifically for automatic
refreshing of the Alias Database with respect to the
last connection with a switch. After a successful
session, the output is saved as text files, which is
passed on to the Parser Sub-module. Should the user
wish to connect to and get the data of another switch,
the entire process must be repeated.

2. Parser Sub-module

Upon the inputting of the required
parameters, the user has the option to select what
parser the system will use to parse the current
switch’s output. This module addresses multi-vendor
compatibility by offering user-implemented
extensibility. By default, the system provides a parser
that parses tables that follow the format similar to the
MAC address table shown in Figure 2-1. This is called
the “Default Parser”, designed for switches that are
based on the structure of the Cisco IOS. However,
there are cases wherein the MAC address table of the
switch does not follow this format (i.e. different
branded switch). In this scenario, the user must
create a Python script that will parse the table in a
manner that would bring out the required data from
the switch’s telnet output (MAC addresses and
switchport interface numbers) like the Default Parser.
A directory will be located among the system’s files
which will store all parsers created for the system,
though newly created parsers must be manually
imported. The system displays the list of parsers it
finds in the repository, and the user selects one, which
is basically an indication of how the incoming telnet
output from that specific switch should be handled,
after which the parsed data is saved in the Alias
Database.

Figure 2-1. Cisco IOS MAC Address Table

It is important to note that the system can
automatically retrieve the MAC address tables of the
last switch it has successfully been able to connect to
using the latest inputted parameters in the
Connection Sub-module. This is a feature known as
“Auto-refresh”, which updates the Alias Database
should significant changes be found by re-establishing
a telnet connection and going through the data
gathering process all over again after a fixed amount
of time, replacing or editing data should the need be
apparent. The system uses the last inputted variables
(switch name, IP address, passwords, and commands)
for the automatic reconnection. Parsing the MAC

address table will also be done with the most recent
parser selected, so the user must change anything
(switch commands and parsers) manually should
there be a need to do so (i.e. connection to a different
switch). In addition, a “Manual Refresh” option will
allow the user to prompt the system to forcibly
reconnect to the switch if an update is desired. If the
user wishes to take the MAC address table of another
switch into account and merge it with any existing
content in the Alias Database, another telnet
connection must be made to the switch, and the entire
process repeated all over again. Prior to the
assignment of host aliases by the user, the parsed
data should be saved in the SQLite database as the
indicated data types as shown in Table 2-1.

B. Alias Manager

Table 2-1. Data Types in the Alias Database

Data Data Type

HostNumber INTEGER PRIMARY

KEY

SwitchName (user-defined) TEXT

MACAddress TEXT

SwitchportNumber TEXT

Alias (user-defined) TEXT

HCT-II-013 3
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

The Alias Manager bridges the user and the
Alias Database. Upon request, the system displays the
MAC addresses saved in the database via the
graphical user interface (GUI), or the User Interface
Module. From there, the user may select each address
and assign an alias of choice. The correlation of each
MAC address to the physical computers is up to the
user to determine, but all MAC address are to be
listed, and can have their aliases assigned, edited, or
revoked at any time. Aliases are strings of a set
amount of characters, and unique from other entries
in the database, although not all MAC addresses are
required to have aliases. They are also in no means
necessary for the functionality of the system, and
their assignment is entirely up to the user’s discretion.

C. Packet Manager

The Packet Manager is responsible for the
capturing and parsing of IPv4 packets that pass
through the managed switch. The core of the code is
based on Prashant Pugalia’s Python packet sniffer [2],
which uses raw sockets in Linux to capture packets,
and breaks them down, afterwards saving them into
the database. The data the module retrieves is
indicated in Table 2-2. However, only TCP, UDP, and
ICMP packets are captured because they represent all
IPv4 end-to-end traffic. Other protocols under IPv4 do
not deal with network sessions, and thus are not
considered, or dropped. [1]

Table 2-2. Data Types in the Packet Database

Data Data Type

Packet Number INTEGER

Destination MAC Address TEXT

Source MAC Address TEXT

Destination IP Address TEXT

Source IP Address TEXT

Destination Port Number TEXT

Source Port Number TEXT

Protocol INTEGER

PacketSize INTEGER

CaptureTime TEXT

D. Report Generator

The Report Generator pools data from both
the Packet and Alias Databases and prepares them to
be drawn on the GUI via the User Interface. Reports
are divided into two – Packet Reports and Bandwidth
Reports.

Packet Reports are tables of data formed by
joining information from both the Alias Database and
the Packet Database. The data expected to be
previewed in Packet Reports are as follows: Packet
Number, Destination Alias, Source Alias, Destination
IP Address, Source IP Address, Destination Port
Number, Source Port Number, Protocol, Destination
Switch Name, Destination Switchport Interface,
Source Switch Name, and Source Switchport Interface.
If an alias is not present for a specific host, the
corresponding MAC address is used instead. Likewise,
if a switch is not identified, all conforming fields in
the report will remain blank.

This joined table may be filtered by host to
clearly see network traffic corresponding to a single
computer. For Bandwidth Reports, the user chooses a
particular host, and whether to view the upload
bandwidth usage or the download bandwidth usage.
For upload bandwidth usage, the Report Generator
takes all packets in the Packet Database with a source
alias (or MAC address) of the host selected by the user.
Then, it takes all the packets in ascending order (by
packet number), and translates the CaptureTime and
PacketSize values as x and y coordinates, respectively.
The y values are then added and averaged together
within a given interval of x (30 seconds) for an
estimated average. If download bandwidth usage is in
question, the Report Generator will take into account
all packets that have the selected host as the
destination. After processing, these values are sent to
the User Interface for graphing in the GUI.

E. User Interface

The User Interface is responsible for
instantiating communication between the user and
the system. It provides forms, tables and drop down
lists for data input, a text field for commands to be
used with the managed switch, and tables and charts
for reports.

For reports, the User Interface takes the data
handed to it by the Report Generator and displays it
in the GUI. Likewise, this module handles the
Bandwidth Reports by simply plotting the calculated x
and y values received from the Report Generator on a
2D line graph.

3. EXPERIMENTS

For testing purposes, the basic system set-up
consists of four computers – one to run the system,
and the other three to simulate hosts running in a
typical network setting, as well as a managed switch
connecting everything together. The host running the
system is connected to the switch’s fully configured
SPAN port (or equivalent). Packets passing through
the managed switch are mirrored, sent out the SPAN

HCT-II-013 4
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

port, and captured and parsed by the system. A
diagram depicting the system setup is shown Figure
3-1.

Figure 3-1. System Setup

The system is developed in Python 2.7, with
SQLite 3 as the database of choice, on Ubuntu 14.

Based on the nature of system, only two
modules were subject to experiments and preliminary
testing – the Packet Manager and the MAC Address
Manager. All other modules merely rely on the
manipulation of data retrieved by these two modules,
or simple string inputs provided by the user. Should
all necessary data be successfully retrieved, the
system’s core is effectively complete.

 The first module to be completed and tested
was the Packet Manager. Tested with heavy internet
traffic on an Ubuntu virtual machine, the module was
put to the test to see if it can capture thousands of
IPv4 packets, possibly even more, even in bursts, and
capture and parse each one. Though performance is
not a concern of the system, the module held up well,
and was able to retrieve the needed data from the
numerous packets. Figure 3-2 shows the code snippet
that parses both the Ethernet and IP headers of the
packets. Figure 3-3 displays the data retrieved from
each of the packets captured before being saved in the
database.

Figure 3-2. Code Snippet from Packet Manager

HCT-II-013 5
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

 Figure 3-3. Parsed Data from Captured Packets

 The other module tested was the MAC
Address Manager. The computer running the module
was connected to a Cisco Catalyst 2960 switch, and
used the default “Cisco parser”. For testing purposes,
the switch connection parameters (IP address and
switch commands) were hardcoded into the module,
though in normal circumstances they are to be
provided by the user. Figure 3-4 shows the Python
script used to establish the telnet connection to the
switch and parse the MAC addresses and the
switchport interface numbers from the IOS’s MAC
address table.

Figure 3-4. MAC Address Manager (Telnet and
Parsing) Code

 Testing proved successful as the switch was
successfully connected to, the MAC address table
retrieved, shown in Figure 3-5, and the MAC address
and switchport interfaces parsed and ready to be
saved in the database, as seen in Figure 3-6.

Figure 3-5. Cisco IOS MAC Address Table

HCT-II-013 6
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

Figure 3-6. Parsed MAC Addresses and Switchport
Interface Numbers

Due to physical hardware limitations (only
Cisco switches were available for use), testing of this
module was only performed on Cisco devices. However,
since this module, and the system as a whole, aims to
address multi-vendor support with its expandable
framework via changeable connection parameters and
swappable Python scripts, the researchers sought
professional technical advice on the theory and the
design of the system as support for its claim to work
across multiple devices via user expansion. This
design was proposed and shown to experts in the field
during the course of its conception and development,
and was deemed a possible, working solution –
capable of expansion without affecting the rest of the
system. Thus, experiments and recommendations
have shown that the system, along with its set
objectives, is not only logical, but purposeful as well.

4. CONCLUSION

Network analyzers are vital for large local
networks that require low fault tolerances. In the
event of undesirable incidents, such as malicious or
inappropriate usage, the source must be traced as
soon as possible, so that proper mitigation and action
may take place. Constant monitoring of the overall
performance of the system by ensuring the total
absence of bottlenecks is also vital, and a task where
in network analyzers and management systems are
almost essential to complete.

Developing a network analyzer with a user-
implemented expansion framework to accommodate
networks with varying vendors of devices alleviates
the concern of native support, and allows the user to
vary between device brands and still hope for a

working network analyzer. In addition, the complete
elimination of host agents ensures that the
management is “centralized”, in a sense that the setup
only includes the computer to run the system, and the
switch or switches to be monitored. Deployment, in
this context, is much faster, and much less of a hassle.

The idea of the system is to give the users
freedom to tweak the way it handles communication
with switches to their liking. Providing such a
platform also removes the burden of patching for
support from the developers. It is reasonable to
conclude that should the right parser be developed for
the right switch, the system is potentially compatible
with all kinds of managed switches, which, in itself, is
a highly-valuable asset.

5. RECOMMENDATIONS

Despite its solutions to vendor limitations
and agent requirements, LLAMAS still has areas
where improvement is needed, which the researchers
highly encourage anyone interested to work on.

 Possibly the biggest drawback of the system
is the potential size of the Packet Database. Each
packet captured takes approximately 20 bytes of space
in the disk. Testing has shown that five minutes
worth of network traffic generated by typical web
browsing by a single host amounts to approximately
12,000 captured packets. At this rate, if the number of
work hours in an office with 24 hosts goes for 8 per
day, this will result to, more or less, 27,648,000
captured packets, leading to a total database size of
around 527 megabytes a day. Ideally, this should pose
no problem if the system is being run on a dedicated
server, and the user may always purge the database
should it occupy too much space. However, the
researchers agree that a built in system to decrease
the disk space occupancy of the database would
greatly reduce the hardware requirements needed to
run the system. The first recommendation, then,
would be to lessen the size of the Packet Database on
the disk without compromising the much needed data
it carries, whether that be through compression,
archiving, or any other method.

 Another area of probable improvement would
be the handling of multiple switches. The system was
originally designed for and tested on one switch, but
realistically speaking, corporate networks will never
run on a single switch. Even though the system
supports multiple switches, the user needs to telnet to
each one individually. The researchers recommend
future work in expanding the platform such that
multiple telnet connections may be performed
simultaneously, and the data required of each switch
may be parsed and saved into the database at the
same time. Not to mention, multiple instances of

HCT-II-013 7
 Proceedings of the DLSU Research Congress Vol. 3 2015

 Presented at the DLSU Research Congress 2015

De La Salle University, Manila, Philippines

March 2-4, 2015

parameters used to connect to separate switches
should also be saved and capable of being called
whenever. This would include taking into account the
automatic refreshing of the Alias Database after set
intervals, or as demanded by the user.

6. ACKNOWLEDGEMENTS

The authors would like to thank Sir Isaac Herculano
Sabas for his constant guidance, recommendations,
and insights on the technical aspects of the system,
and for his comments during the authoring of this
document.

7. REFERENCE

[1] Microsoft. IPv4 Protocols. (2009). Retrieved from
http://technet.microsoft.com/en-
us/library/dd392264(v=ws.10).aspx

[2] Pugalia, Prashant. (2011). Code a Network Packet
Sniffer in Python for Linux. Retrieved from
http://www.binarytides.com/python-packet-sniffer-
code-linux/

[3] Telnetlib – Telnet Client. (n.d.). Retrieved from
https://docs.python.org/2/library/telnetlib.html

