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Abstract:  People working in laboratories, such as the TALA emphatic space are 

expected to be productive most if not all the time. However, factors such as being 

exposed to different sound sources could result to distractions that could affect 

productivity. In order to understand which types of sounds affect the productivity of a 

person, a system that could classify sound sources should be developed first. 

Understanding the composition of sound helps determine the state of the 

environment from which it is heard.  In literature, the task of automatic sound 

classifications has been simplified into a binary classification problem.  This is 

caused by the challenges posed by classifying sound into more than two categories.  

However, applications in ambient sound control, context-aware computing, among 

others, require that such multiple sounds classifier be developed. This work is 

focused on classifying a sound source into chair bump, chair drag, door, and music 

inside a laboratory. The features extracted from the four sound sources are modelled 

using decision tree, sequential minimal optimization, and multilayer perceptron. 

Results showed that for two-way classification, an accuracy of 98.9% is achieved for 

MLP. Also, 83.9% and 75.37% accuracy for MLP are achevied for three-way and four-

way classification ,respectively 

 

Key Words: sound source; classification; machine learning 

 

 

1. INTRODUCTION 

 
Increased personal control and comfort needs 

of employees sparked the concern among various 

organizations.  These lead them to come up with an 

environment and office design that would fulfil their 

members’ needs and even help boost productivity in 

the workplace.  One such environment is the TALA 

(Cu et al., 2007) empathic space in the Center for 

Human-Computer Interactions (CEHCI) in De La 

Salle University.   

TALA provides empathic support to its 

occupants by determining their emotions and 

adjusting environmental factors such as room 

temperature and brightness to best meet an 

occupant’s demands.  The empathic space is also 

capable of performing emotion-based interactions 

through analysing the facial expression, speech, and 

movement of its occupants. Furthermore,   it is 

capable of playing music that best suits an occupant’s 
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mood.  This ability can be utilized when there is 

sufficient knowledge regarding the types of sounds 

that can help the occupants’ productivity. 

Creating a system that has the same 

mechanism as the human ear has been proven to be a 

hard task.  Finding features or mathematical models 

that describe the variability of classes is not directly 

evident.  This made it uncommon to encounter works 

which deal with the classification of sound as speech, 

noise, or music.  Most related works as referred in 

Table 2 commonly explore on two-class problems such 

as the classification of speech from music (Fakotakis 

and Ntalampiras, 2008; Anderson, 2004; Cai, 2013).  

These works made use of various techniques ranging 

from machine learning (Anderson, 2004; Cai, 2013) to 

digital signal processing (Yen, 2011; Fakotakis and 

Ntalampiras, 2008; Balabko, 1999) which usually 

yields 62-95% accuracy. 

One common problem shared by these works 

is that the two sound classifications exhibit similar 

characteristics which often lead to the classification of 

speech as music or music as speech.  Such 

characteristics exhibited by both sound classifications 

are strong rhythmic beats (Bugatti et al., 2002) and 

timbre. In spite of this being the case, there exists a 

few works (Lu et al., 2012; Montacie and Caraty, 

2005; Papaj, 2008) that were able to classify more 

than two sound classes. However, these multi-class 

problems are approached using binary classification, 

a task wherein elements are grouped into two classes. 
 

2.  METHODOLOGY 
 

This section serves as the foundation of the 

research and a guide in choosing the most suitable 

and distinguishable model that can solve the problem 

of classifying a sound source into music, noise, or 

speech. 

2.1 Data Gathering 

For the entirety of the work, all audio data 

were recorded in the CEHCI laboratory.  The 

recordings involved a single microphone strategically 

placed inside the laboratory as shown in Figure 1 

such that the amplitude of the sound received by the 

microphone would not be biased in one part of the 

room.  A total of five hours of audio information was 

recorded and saved as WAV files with the use of 

Audacity, an audio editor and recorder. 

 
 
 
 

 
 
 
 
 
 
 
Fig. 1. CEHCI setup 
 

For the training data, actual sound produced 

by the occupants of the CEHCI was recorded.  Any 

recordings, where an instance involved more than one 

classification of sound occurring concurrently, were 

removed from the training data.  One example would 

be when a person spoke during the recording of the 

raw data.  The recordings were then labeled into 

categories namely: music, bell, chatter, footsteps, 

telephone ring, chair bump, chair drag, and door. 

All recordings labeled as chair drag, door, 

chair bump, or music were chosen for the preliminary 

work.  The recordings were sampled at 44.1 kHz and 

were later segmented into 2048 samples (46 ms) 

using a Hamming window function which is usually 

performed by related work (Balabko, 1999). 

2.2 Feature Selection 

An initial set of 62 features were used for 

modelling. 

JAudio, an audio feature extraction tool, was 

used to produce the CSV files containing the feature 

value of the audio recordings. These files were 

modified in order to create a data set which does not 

include features with missing values so that the 

computational speed would be faster.  The number of 

instances for each classification was balanced and the 

instances where some features cannot be derived 

were removed.  This produced a dataset with a size 

described in Table 3. 

2.3 Modelling 

The extracted feature values were fed into 

WEKA (Waikato Environment for Knowledge and 

Analysis), an open source classification and data 

mining software, for the construction of different 

models. The modelling algorithms used includes J48, 

Sequential Minimal Optimization (SMO), and Multi-

Layer Perceptron (MLP) which were also applied by 

similar works (Yen, 2011; Lu et al., 2012). 

The models were then validated using a 

number of performance metrics namely: Cohen’s 

kappa coefficient, precision, recall, and accuracy. 

Microphone 
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3.  RESULTS AND DISCUSSION 

 

The initial experiment made use of three 

different machine learning techniques to establish 

the optimal modelling technique among the three: 

decision tree (J48), sequential minimal optimization 

(SMO), and multilayer perceptron (MLP). 

An experiment was conducted using two 

different sets of features namely: full-featured and 

feature-selected as shown in Tables 3-6.  This was 

performed to further understand the capabilities of 

the models. 

Features commonly used by different 

literature (Lu et al., 2012; Fakotakis and 

Ntalampiras, 2008) and are available in JAudio were 

included in an initial set. To decrease the 

dimensionality and computational complexity of the 

system, the features were reduced to make up the 

feature-selected set.  

The features are then used to extract 

attributes from these sound sources namely: chair 

bump, door, chair drag, and music.  These were some 

of the most commonly occurring sound sources in the 

CEHCI. 

For the 4-class classification, as shown in 

Table 7, a maximum classification rate of 99.9% was 

achieved in the J48 model. It was observed that the 

decision rules of J48 only made use of Area Method of 

Moments (AMM). In order to better understand the 

models, AMM was removed from the feature sets. 

This yielded results with an average classification 

rate of 75.3%. It can also be seen that the full feature 

set without AMM performed significantly better than 

feature selected with an average increase of 4.82%.  

Since problems may arise from doing 

multiclass classification, two and three class 

classification problems were also considered. This will 

help in understanding the difficulties that may arise 

once the number of classifications is increased.  

For the 2-class classification, it shows that 

“Bump-Others” performed the worst among the rest. 

It achieved a classification rate of an average of 

69.45% compared to 85.44% of the rest. It can be 

observed in the model that a bump is usually 

misclassified as a door. The aperiodic nature of both 

the door and the bump may have caused this 

confusion.  

Lastly, for the 3-class classification, it shows 

that “Door+Music+Others” performed the best among 

the others. It successfully achieved a classification 

rate of 85.422%. Since the features used were evident 

in music, it can produce a high accuracy rate. Also, 

the kappa are high which shows that classification 

was consistent. 

 

4.  CONCLUSIONS 
 

Among the machine learning techniques, 

MLP achieved the highest classification rate among 

all multi-class problems. The models also had a 

difficulty in classifying “chair bump” which led to 

several models getting low accuracy. 

Using the tested models, other sound 

classifications such as speech and other types of 

music and noise can be applied.  In these cases, 

machine learning would be a highly suitable 

approach since a model is easier to customize 

compared to statistic digital processing.  This 

contributes to the scalability of the system where 

users may have different profiles and preferences 

with regards to ambient sound.  This eliminates the 

threshold requirements that usually come along with 

sound source classifiers.  A machine learning 

approach would also open avenues where multiple 

dimensions of attributes and large number of features 

are manageable. 
 

5.  FUTURE WORKS  
 
To be able to further describe and 

understand the environment, it is needed to further 

select properly the feature set that will be used. 

Overlapping instances is also something planned to 

be further explored and experimented. Lastly, being 

able to classify the sound sources into the three 

general classes- music, speech, and noise using the 

feature set prepared will be tested. 
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TABLE 1.  FEATURES 

Feature 
Description 

Spectral Centroid The center of mass of the power spectrum. 

Spectral Rolloff Point 
The fraction of bins in the power spectrum at which 85% of the power is at lower 

frequencies. This is a measure of the right-skwedness of the power spectrum. 

Spectral Flux 
A measure of the amount of spectral change in a signal. Found by calculating the 

change in the magnitude spectrum from frame to frame. 

Compactness 

A measure of the noisiness of a signal. Found by comparing the components of a 

window's magnitude spectrum with the magnitude spectrum of its neighbouring 

windows. 

Spectral Variability 
The standard deviation of the magnitude spectrum. This is a measure of the variance 

of a signal's magnitude spectrum. 

Root Mean Square A measure of the power of a signal. 

Zero Crossings 
The number of times the waveform changed sign. An indication of frequency as well as 

noisiness. 

Strongest Frequency Via 

Zero Crossings 

The strongest frequency component of a signal, in Hz, found via the number of zero-

crossings. 

Strongest Frequency Via 

Spectral Centroid 
The strongest frequency component of a signal, in Hz, found via the spectral centroid. 

Strongest Frequency Via FFT 

Maximum 

The strongest frequency component of a signal, in Hz, found via finding the FFT bin 

with the highest power. 

MFCC MFCC calculations based upon Orange Cow code 

LPC 
Linear Prediction Coeffecients calculated using autocorrelation and Levinson-Durbin 

recursion. 

Method of Moments Statistical Method of Moments of the Magnitude Spectrum. 
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Table 2. References 

 

Reference Description Approach Results 

Yen, J. 

(2011).  

Classified sound into 

speech and music 

Fourier transform, time-frequency 

analysis, continuous wavelet 

transform 

78% accuracy 

Lu, L. & et 

al., (2012). 

Classified sound into 

speech/music/silence/

environmental 

sound 

K-nearest-neighbor, spectral pairs-

vector quantization 

95% music and 88% environmental 

sound 

Fakotakis, N. 

& 

Ntalampiras, 

S. (2008).  

Classified sound into 

speech and music 

Wavelet transform, Gaussian 

mixture model, ten-fold cross 

validation 

Success rate of 91.8% 

Balabko, P. 

(1999). 

Classified sound into 

speech and music 

Short-time Fouriere transform, 

Hamming window, Mel-scal 

transformation, Gaussian estimation 

Error-rate 62% to 98% 

Khoa, P. 

(2012). 

Classified speech 

from silence and 

noise 

Feature extraction Use spectral local harmonicity feature 

Anderson, T. 

(2004).  

Classified sound into 

speech and music 

k-NN, Gaussian mixture model, 

HMM 

Recognition rate of 98% 

Cai, W. 

(2013).  

Classified sound into 

speech and music 

Hamming window, pitch estimation 

algorithm, speaking rate estimation 

algorithm 

BaNa for highest pitch estimation 

accuracy, sub-band correlation for 

speaking rate estimation algorithm 

 

TABLE 3.  INSTANCE COUNT PER CLASSIFICATION 

Class 
Number of Instances 

2-class 3-class 4-class 

Chair 

Bump 

1500 500 500 500 1500 1500 1500 750 750 750 1500 

Chair 

Drag 

500 1500 500 500 1500 750 750 1500 1500 750 1500 

Music 500 500 1500 500 750 1500 750 1500 750 1500 1500 

Door 500 500 500 1500 750 750 1500 750 1500 1500 1500 
 
TABLE 4.  FULL FEATURE 2-CLASS MODEL PERFORMANCE METRIC 

Machine 

Learning 

Chair Bump vs Others Chair Drag vs Others Door vs Others Music vs Others 

Accuracy 
(%) 

Kappa Accuracy 
(%) 

Kappa Accuracy 
(%) 

Kappa Accuracy 
(%) 

Kappa 

J48 70.0667 0.4013 80.2 0.604 78.4667 0.5693 96.7333 0.9347 

SMO 71.1 0.422 80.7333 0.6147 79.1333 0.5827 98.1333 0.9627 

MLP 73.2667 0.4653 84.4 0.688 81.1333 0.6227 98.9 0.978 
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TABLE 5.  FEATURE SELECTED 2-CLASS MODEL PERFORMANCE METRIC 

Machine 

Learning 

Chair Bump vs Others Chair Drag vs Others Door vs Others Music vs Others 

Accuracy 
(%) 

Kappa Accuracy 
(%) 

Kappa Accuracy 
(%) 

Kappa Accuracy 
(%) 

Kappa 

J48 69.533 0.3907 77.8 0.556 82.1 0.642 94.5667 0.8913 

SMO 62.733 0.2547 74.6 0.492 79.6333 0.5927 91.0333 0.8207 

MLP 70.0333 0.4007 80.4667 0.6093 83.2667 0.6653 96.6667 0.9333 

 
TABLE 6.  FULL FEATURE 3-CLASS MODEL PERFORMANCE METRIC 

Machi

ne 

Learni

ng 

Chair Bump 

vs Door + 

Others 

Chair Bump + 

Chair Drag + 

Others 

Chair Bump + 

Music + 

Others 

Chair Drag + 

Door + Others 

Door + Music 

+ Others 

Chair Drag +  

Music + 

Others 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

J48 65.822 0.48

73 

66.644

4 

0.49

97 

73.622

2 

0.60

43 

68.533

3 

0.52

8 

82.244

4 

0.73

37 

80.577

8 

0.70

87 

SMO 67.511

1 

0.51

27 

66.733

3 

0.50

1 

74.022

2 

0.61

03 

73.222

2 

0.59

83 

84.133

3 

0.76

2 

82.844

4 

0.74

27 

MLP 71.711

1 

0.57

57 

71.511

1 

0.57

27 

76.155

6 

0.64

23 

76.511

1 

0.64

77 

85.422

2 

0.78

13 

84.822

2 

0.77

23 

 
TABLE 7.  FEATURE SELECTED 3-CLASS MODEL PERFORMANCE METRIC 

Machi

ne 

Learni

ng 

Chair Bump 

vs Door + 

Others 

Chair Bump + 

Chair Drag + 

Others 

Chair Bump + 

Music + 

Others 

Chair Drag + 

Door + Others 

Door + Music 

+ Others 

Chair Drag +  

Music + 

Others 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

Accura
cy (%) 

Kap
pa 

J48 65.667 0.48

5 

63.866

7 

0.45

8 

70.022

2 

0.55

03 

69.266

7 

0.53

9 

81.177

8 

0.71

77 

77.888

9 

0.66

83 

SMO 59.533

3 

0.39

3 

59.377

8 

0.39

07 

65.311

1 

0.47

97 

69.466

7 

0.54

2 

77.578 0.66

37 

75.844

4 

0.63

77 

MLP 67.355

6 

0.51

03 

66.311

1 

0.49

47 

71.4 0.57

1 

74.311

1 

0.61

47 

83.933

3 

0.75

9 

81.666

7 

0.72

5 

TABLE 8.   4-CLASS MODEL PERFORMANCE METRIC 

Machine 

Learning 

Full Feature Set Recommended Feature 

Set 

Full Feature Set 

Without AMM 

Feature Selected 

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa 

J48 99.9333 0.9991 99.9667 0.9996 69.15 0.5887 67.35 0.5647 

SMO 98.9167 0.9856 97.7 0.9693 71.3667 0.6182 63.6833 0.5158 

MLP 99.5833 0.9944 99.2667 0.9902 75.3667 0.6716 70.3833 0.6051 

 


