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Abstract:  The coloring game is played by two players called Alice and Bob on the vertices of a graph 

G as follows: Using colors from a set              of k distinct colors, the players take turns in 

assigning colors to the vertices of G such that no two adjacent vertices will receive the same color. 

The two players play alternately with Alice always moving first. The game ends when either all the 

vertices have been colored, or it is no longer possible to color an uncolored vertex. Alice wins in the 

first case, and Bob wins otherwise.  

 

The game chromatic number of a graph G is a graph invariant representing the smallest number of 

colors for which Alice has a guaranteed winning strategy. The game chromatic number of a  graph G  

is denoted by .  

 

The game chromatic number of various classes of graphs, including trees, cactuses and cartesian 

products of various types of graphs, have been determined. In this paper, the game chromatic 

number of some common classes of graphs, such as paths, cycles, complete graphs, complete bipartite 

graphs,star graphs, fans, wheels, Cartesian product graphs, and the Petersen graph, are determined. 

Some of these results are established by using the relationship between the game chromatic number 

with another graph invariant called the game coloring number. A previously published result is also 

modified. 
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1. INTRODUCTION 

 

By a graph we mean a pair G = (V(G),E(G)) where 

V(G) is a nonempty set of elements called the vertices 

of G, and E(G) consists of unordered pairs called 

edges of elements of V(G). The numbers |V(G)| and 

|E(G)| are called the order and the size of the graph 

G, respectively. 

 

The coloring game is a game played by two 

players, who will be referred to as Alice and Bob, on 

the vertices of a finite graph G. Using colors from a 

set X = {~1,2, …, k}, a player makes a move by 

coloring an uncolored vertex of G such that no two 

vertices will be assigned the same color. Alice and 

Bob move alternately throughout the game, with 

Alice always making the first move. The game ends 

when no player can make a feasible move. Alice wins 

if all the vertices have been colored, and Bob wins 

otherwise. 

 

The game chromatic number of the graph G, 

denoted by      , is the smallest number of colors for 

which Alice has a winning strategy. The game 

assumes that the players are both rational and will 

always make the best possible move at any time in 

the game. 
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Example 1. 

Consider the path    order 3. Clearly, a set with only 

one color will not allow Alice to win. On the other 

hand, if there are two colors, then Alice can make her 

first move on the middle vertex, and the remaining 

two vertices can be assigned the second available 

color. This shows that         . 

 

The chromatic number of a graph G is the smallest 

positive integer        such that the vertices of G 

can be assigned k colors such that adjacent vertices 

always receive different colors. It is clear that for any 

finite graph G, we have              On the other 

hand, a related graph invariant called the game 
coloring number can be shown to be an upper bound 

for         Exact values or bounds for the game 

chromatic number of various classes of graphs have 

been determined. In (Bartnicki, et. al, 2008) and (Sia, 

2009) exact values for the game chromatic numbers 

of cartesian product graphs involving paths, cycles, 

stars, wheels, complete graphs and complete 

bipartite graphs were found. In (Faigle et.al., 1993)  

the game chromatic numbers of trees and interval 

graphs was investigated, while in (Sidorowicz , 2007)   

the game chromatic number of families of cactuses 

was established. 

 

In this paper, we determine the exact values of the 

game chromatic number of the following classes of 

graphs: paths, cycles, stars, wheels, complete graphs, 

complete bipartite graphs, and the Petersen graph. 

We also modify a result on the game chromatic 

number of the cartesian product graph of paths and 

wheels from (Sia, 2009). 

 

2. RESULTS 

2.1 The Game Chromatic Number of Some 

Simple Families of Graphs 
 

In this section, we identify the game chromatic 

numbers of some familiar classes of graphs.   These 

are: the paths, cycles, stars. Wheels, the complete 

graphs and the complete bipartite graphs. 

 

The path of order n, denoted by   , is a walk of length 

n-1with n distinct vertices.  The cycle graph of order 
n, denoted by    is the graph with vertex set 

                      such that             is a path, 

and      is an edge.  A star of order n+1, denoted   , 

is the graph with vertex set                        

and edge set             , i = 1, 2, …, n } The vertex 

  , usually called the central vertex, is adjacent to all 

the other vertices of the vertex set while the degree 

of each of the remaining n vertices is 1.  A wheel of 
order n+1, denoted by     is the graph with vertex set  

                        such that            form a 

cycle and    is adjacent with   , i = 1, 2, …, n.  A 

complete graph of order n, denoted by       is a graph 

with $n$ vertices which are pairwise adjacent.  A 

complete bipartite graph of order m+n, denoted  by 

    , is the graph satisfying the three conditions: 

(a) The graph has vertex set            where A 

and B are disjoint non-empty sets, 

(b) Both A and B are independent sets, and 

(c) Every vertex in A is adjacent to each vertex in B. 

 

Our results for these classes of graphs are given in 

the following propositions: 

 

Proposition 1. 

Let   be a path, of order     Then 

 

         {
            
          

 

Proof: 
 

For n = 2, it is clear that Alice always wins. If n = 3, 

Alice's winning strategy is to color the middle vertex 

first. For    , if there are only two colors, then Bob 

can force a win by coloring a vertex at a distance of 2 

from the vertex colored by Alice, thereby forcing a 

third color on their common neighbor. If there are 3 

colors, then since each vertex is adjacent to at most 2 

vertices, Alice is guaranteed to win no matter where 

she makes her first move. 

 

Proposition 2. 

Let    be a cycle of order    . Then           . 

 

Proof: 
Similar to the path graphs, regardless of where Alice 

moves, she is guaranteed to win with 3 colors since 

every vertex is adjacent to 2 vertices. 

 

Proposition 3. 

For any star         we have            

 

Proof: 
Showing that Bob can win with one color no matter 

what Alice does is trivial. We now show that Alice 

can win with two colors. In any given star   , Alice's 
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strategy is to color the central vertex on her first 

move. The subsequent moves by Alice or Bob is to 

color the outer vertices with the second color. Since 

the outer vertices form an independent set, this 

second color is sufficient to color all of them. 

Therefore,            

 

Proposition 4. 

For any wheel       , we have          . 

 

Proof: 
As with Alice's strategy in the star graph, she colors 

the central vertex in her first turn. The remaining 

uncolored vertices form a subgraph of   , isomorphic 

to that of a cycle of order $n$, which has a game 

chromatic number of 3. Then          . 

 

Proposition 5. 

Let    be a complete graph of order $n$. Then 

         . 

 

Proof: 
Since the vertices of       are pairwise adjacent, no 

two vertices can receive the same color. Thus 

         . 

 

Proposition 6. 

Let      be a complete bipartite graph of order m+n. 

Then 

  (     )   {
             
          

 

 

Proof: 
Since the graph is bipartite, the vertex set partitions 

into two independent sets A and B, with |A| = 

m,~|B| = n. We consider the following cases: 

 

Case 1: min(m,n) = 1 

Without loss of generality, assume |A| = 1. Alice 

forces a win by coloring the only vertex in A. Since 

the vertices in B are independent, one color is 

sufficient to color all of them. 

 

Case 2:              

Since every vertex in A is adjacent with every vertex 

in B, it is clear that at least two colors must be used. 

Moreover, since            , Bob can force one of 

the two sets A and B to be colored with two colors. 

This shows that   (     )      Without loss of 

generality, assume that Alice chooses to color a 

vertex in A with 1. If Bob responds to this move by 

coloring a vertex in the same independent set with a 

different color, then Alice responds by using the third 

color on the other independent set, which forces the 

graph to only 3 colors. On the other hand, if Bob 

colors on the other independent set, then we can see 

that regardless of where Alice moves, she will win 

the game given three colors. 

 

In both cases, Alice can force a win with three colors. 

Hence,   (     )      

 

2.2 The Game Chromatic Number of the 
Petersen Graph 
 
The Petersen graph is the graph illustrated in Figure 

1: 

 

 
 

If we denote the Petersen graph by  , then the game 

chromatic number of this graph is given in the 

following result: 

 

Theorem 1: 

If    is the Petersen graph, then          

 

Proof: 
The proof consists of two parts, namely: 

(a) Show that Bob can force a win with less than 

three colors. 

(b) Show that Alice has a winning strategy when 

three colors are used. 

 

Without loss of generality, suppose Alice colors in the 

outer cycle of the graph. Bob then colors a vertex of 

distance 2 from the vertex that Alice colored. The two 

colored vertices are adjacent to another vertex, 

indicated by an asterisk (*), which now requires a 

third color. Thus, Bob wins when there are only two 

playable colors. This is illustrated in Figure 2. 
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The successive moves show that a third color is 

necessary.  Thus,          

 

To show that Alice has a winning strategy with three 

colors, we fix Alice's initial move to be on one of the 

vertices of the outer cycle. We show that with this 

initial move, no matter how Bob plays, Alice will 

always be able to force a win. 

 

We consider five cases corresponding to Bob's first 

move. These are illustrated in Figure 3 below. 

Vertices that have been colored are labeled as 

``color(player turn)''. For example, 1(A1) means Alice 

used the color 1 on her first turn. The shaded vertices 

indicate where Bob will make his first move. When 

there are two shaded vertices in the graph, it means 

that the two vertices are symmetric with respect to 

the vertex colored by Alice, and Bob can choose either 

vertex to color. 

 

 
 

Each of these cases can be subdivided into several 

subcases showing Alice's second move. The proof is 

completed by exhausting all possible moves and 

countermoves by Alice and Bob. In all of these, it can 

be shown that Alice is able to prevent a vertex from 

having three different colored neighbors, and hence 

limit the play to three colors. This shows that 

          

 

2.3 The  Game Chromatic Number of 
Cartesian Product Graphs 
 

Recall that if     and    are graphs, then the 

cartesian product        is the graph with vertex set 

                                         and 

edge set             [               ]       
                   such that either          and 
             , or               and         
 

Example 2. 

Consider the path,   and the cycle,   , with vertex 

sets           and             respectively.  The 

Cartesian product        is pictorially represented 

and shown in Figure 4: 

 

 
 

 

In (Sia, 2009), the following result on the Cartesian 

product of the path   with the wheels    was given: 

 

Theorem 2: 

For any integer                     

 

We will show that the above theorem holds for 

       In order to do this, we will use the concept of 

the game coloring number.  Let G be a graph. 

 A linear order  L on G is any ordering of the 

vertices of G. 

 Let $L$ be a linear order on G and let x be a 

vertex of G. The back degree of x relative to the 
linear order L, denoted by      , is defined by  
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If L$ is a linear order on the vertex set of a graph G,  

then the back degree function of L, denoted by     , 
is defined by                         . 
 

We now define the game coloring number of a graph 

G. We consider a simpler two-person game on a 

graph G called the marking game.  As before, we 

name the two players as Alice and Bob. The two 

players take turns marking vertices in G, with Alice 

making the first move. Only previously unmarked 

vertices can be chosen by a player for marking. A 

linear order L is induced by this game by arranging 

the vertices of G in the order in which they were 

marked. Alice's objective is to minimize     , while 

Bob seeks to maximize it. At the start of the game, 

the two players decide on a positive integer k. Bob 

wins if at some point in the game, there exists an 

unmarked vertex v with k marked neighbors.  On the 

other hand, Alice wins if this situation never arises. 

The game coloring number  of G is the smallest 

integer k for which Alice has a winning strategy. 

This will happen if Alice can keep the number of 

marked neighbors of any vertex of G to less than or 

equal to k-1. 

 

We formalize the definition of the game coloring 

number as follows.  Let G be a graph, and let 

                                       The game 
coloring number  of G, denoted by        , is defined 

to be             where 

                                       .   
 

Note that for a given linear order L on the vertex set 

of a graph G, the back degree of any vertex x in G 

represents the number of vertices adjacent to x which 

were marked prior to x. If we relate this to the 

coloring game by interpreting the marked vertices to 

be the vertices that have already been colored, then 

the back degree of x can be interpreted as the 

number of neighbors of x that have been colored, 

using at most       colors. Hence, to color x and its 

neighbors, at most          colors are needed. 

Therefore, the number b(L) + 1 is an upper bound for 

the number of colors needed so that all the vertices of 

G can be colored, and             is an upper 

bound for the least number of colors needed for Alice 

to win the coloring game. We have thus shown that 

              . 

 

The following result which appeared in (Sia, 2009 ) 

will be useful in establishing the modification of 

Theorem 2. 

 

Theorem 3: Let G and H be two graphs. Then 

                        (     )        

where (     )  is the union of all G-fibers and      

is the maximum degree of a vertex in H. 
 

The proof of Theorem 2 as it appears in (Sia, 2009) 

consists of describing a winning strategy for Alice, 

and the author remarked that the condition  was 

necessary at one point in the strategy. However, 

while going over the proof, we failed to see the 

necessity of the above condition. Our investigations 

showed that the range of values for n can be 

expanded, and we have the following result. 

 

Theorem 4: 

For any integer    , we have               . 

 

Proof: 
There are three cases to consider for the proof, 

namely                . For the latter two 

cases, proofs by exhaustion were used by considering 

the different possible cases for Bob's first move 

(distinguished by what vertex he could color and 

what color he will use in that vertex),  and how Alice 

will respond to these moves.  

 

Case 1:     

For      a specific strategy was used for Bob to 

force the use of five colors for the graph.  We first 

show that at least 5 colors are necessary for Alice to 

have a winning strategy. Without loss of generality,  

we will assume that Alice's first move is on $a_0$, 

and Bob's first move is on of the outer vertices of the 

second copy of   . 

 

 If Alice colors    with a third color, then Bob 

responds by coloring    with a fourth color, 

creating two threats which Alice cannot block 

simultaneously, thus forcing the graph to five 

colors.  

 

We will partition the remaining cases into two, the 

case where Alice makes her second move in the 

vertices     and the  case when she makes her second 

move on any of the  vertices   . 
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 Suppose Alice colors on the   ’s on her second 

move.. Without loss of generality, suppose she 

colors on either    or   .  Then Bob responds by 

coloring    with color 3. Alice must now use a 

fourth color on   , for otherwise Bob can force a 

fifth color on his next turn.  Assume Alice colors 

   with color 4 and Bob responds to this move by 

coloring    with color 2.  This will create 

simultaneous threats  to    and to   . Alice 

cannot block both these threats so the graph is 

forced to five colors. If instead Alice colors on any 

of the vertices        ⌊   ⌋    ⌊   ⌋        
 , then Bob responds by coloring    with color 3. 

Again Alice uses color 4 on   ,, and  Bob then 

responds by using color 2 on   , thus creating 

two threats to    and to   .  This again forces a 

fifth color on the graph. 

 

 Suppose now that Alice colors one of the   ’s on 

her second move. We note that Alice will not use 

a third color on the    ’s since this would allow 

Bob to force a fifth color on his next turn.  Hence, 

Alice's choices are either to use color 1 or color 2 

on her second move. If Alice uses color 1 on any 

vertex   , then Bob responds by using color 3 on 

a vertex with distance 2 from the vertex that 

Alice colored.  Thus, if Alice colored   , then Bob 

colors   . Again Alice must block the threat to   , 

so she uses a fourth color on this vertex.  Her 

move creates a threat to vertex   , and Bob 

responds to this by coloring    with the fourth 

color, forcing a fifth color to the graph. Suppose 

instead that Alice uses color 2 on a feasible 

vertex. Bob responds by using color 3 on a vertex 

with distance 2 from the vertex colored by Alice 

on her second second move.  Thus, for example, if  

Alice colored vertex   , then Bob responds by 

coloring   . Again, Alice responds by coloring    

with a feasible color, and Bob responds to Alice's 

third move by color    with color 2.  This creates 

simultaneous threats to    and to   , which Alice 

cannot both block, so the graph is forced to 5 

colors. 

 

We have thus shown that              for    .  

A pictorial representation of        (with some 

edges removed for less confusion, but it is understood 

that these edges exist) is shown in Figure 5 below. 

Any of the cases above can be shown to work on this 

graph. 

 

 
 

To show that             , we apply Theorem 3 

with       and      . Combining these two 

inequalities gives us                   . 

 

Case 2:      

For    , the following six subcases to be considered 

are the possible moves that Alice can make on her 

second turn (In the figures below, these are denoted 

by the shaded vertices).  For each of these subcases, 

the subsequent optimal moves by the two players will 

be considered.  In each case, it can be shown that 

           . 

 

 

Case 2:      

As with    , we identify all possible subcases based 

on Alice's first move (these are again denoted by the 

shaded vertices in the figures below) .  The  analysis 

is similar to those for the subcases in Case 2, so we 

will just identify the cases and their final 

configurations, as shown below: 

 

This completes the proof of Theorem 4. 

 

3.  CONCLUSIONS 
 

In this study, the game chromatic numbers of some 

classes of graphs were identified. Aside from the 

more common classes of graphs , such as paths, 

cycles, stars, wheels, complete graphs and complete 

bipartite graphs, results for the game chromatic 

number of the Petersen graph and the Cartesian 

product of paths with wheels were also presented. 

 

The study of the game chromatic number of a graph 

is far from complete.  For the Cartesian product 

graph alone, there is still no general result for the 

Cartesian product of two arbitrary graphs G and H.  

The determination of the game chromatic number of 

graphs obtained through various graph operations 
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offers a fertile source of problems for future studies. 
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