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Abstract:  The study aimed to enhance the accuracy of Root-MUSIC direction-of-

arrival (DoA) estimates of a passive radio frequency identification (RFID) tag system 

with a reader that utilizes a two-element uniform linear array (ULA). The 

enhancement of accuracy was made by using an adaptive filter called least mean 

squares algorithm (LMS) to reduce the effect of noise and carrier leakage before 

extracting the DoA estimates through root-multiple signal classification (root-

MUSIC) algorithm. Initially, through the use of a simulation in MatLab®, random 

complex signals from angle bearings negative 90 through positive 90 degrees are 

established, including noise and carrier leakage added and characterized as additive, 

white, Gaussian-distributed random variable. An LMS filter, with step sizes of 0.005, 

0.002 and 0.001, was designed to reduce the inaccuracy of the estimates by filtering 

the distortion-afflicted complex signal obtained at the front end of the receiver of the 

model established. Results of the estimates were compared to the actual DoA of the 

tag by measuring the discrepancy in degrees as root-mean-square error. 

Observations have also been done in the case when signal-to-noise ratio (SNR) of the 

received signal was changed, or when the number of iterations of the filter was 

varied to show how the convergence of the estimates to the true bearing of the 

passive RFID tag behaved in accordance to the said variations. The LMS filter has 

been very helpful in reducing the error in extracting the estimates and the DoA 

estimates converged to its real value when the step size of LMS is 0.001. 

   

Key Words: Direction-of-arrival, root-MUSIC, adaptive filtering, least mean-squares, 

passive RFID. 

 

1. INTRODUCTION 
Emitter localization has been a very 

challenging problem in sensor array signal processing 

systems and has been given attention to by 

researchers who have formulated algorithms to 

enhance the method in recent years. Location-finding 

methods, techniques and implementations have been 

deemed very helpful in networks where pinpointing 

the location of a mobile device or emitter, whether 

stationary or in motion, is one of their core functions. 

One example of a system that can benefit from the 

results of such innovations is the passive RFID tag 

system (Chawla and Ha, 2007). Unlike the active 

RFID system, the tag has no battery or power source 

from which it gets energy to transmit to a reader or 
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scanner. Rather, the tag depends on the signal 

emitted by the reader and the former elicits a 

response that uses the available power it can harness 

from the received signal so that the response may 

reach the reader. Such signal is transmitted back 

through backscattering. This paper illustrates the use 

of passive RFID tag system as a platform for the 

simulations done to obtain the location of a tag that is 

within the range of the RFID reader or sensor. 

Analysis of the spectrum of the received 

signal has been one of the main emphases of the 

scenario in order to deal with the problem more 

effectively. Methods such as Estimation of Signal 

Parameters via Rotational Invariance Techniques 

(ESPRIT) (Paulraj et al, 1985), MUltiple SIgnal 

Classification (MUSIC) (Schmidt, 1986) and its more 

extensive version root-MUSIC, Maximum Likelihood 

(ML) (Fisher, 1971), Capon Algorithm (Capon, 1971), 

among others. This study employs the root-MUSIC 

algorithm in extracting the direction-of-arrival 

estimates of the passive RFID tag to a given sensor 

with a two-element uniform linear array (ULA) 

antenna system.  

Several algorithms for estimation accuracy 

enhancement have been tried and tested to optimize 

localization systems. Each offers its own set of 

advantages in terms of ease of implementation, 

degree of resolution, speed of convergence, etc., and 

trades off with setbacks or disadvantages such as 

method complexity, sophistication in hardware 

implementation, memory limitations, etc. Adaptive 

filter algorithms, like Wiener (Wiener, 1942), Least 

Mean-Squares (LMS) (Widrow and Hoff, 1960), 

Recursive Least-Squares (RLS) (Plackett, 1950), 

Kalman (Kalman, 1960), among others, are used 

more frequently in such systems. The simulations in 

this study use the LMS filter algorithm to reduce the 

effect of noise in the deviations of tag location 

extraction through root-MUSIC. 

 

2.  METHODOLOGY 
Ultra-High Frequency (UHF) RFID system, 

which was used as a platform model for this 

experimentation, extends the capability of using low 

frequency (LF) or high frequency (HF) (Dobkin, 

2008). Although most of the application of RFID does 

not require longer read range, UHF RFID presents a 

flexibility of having to read tag within the near-field 

and also in the far-field whenever it is needed. This 

introduces a problem in DoA estimation since most of 

the high resolution algorithms for DoA estimation 

were based on far-field assumptions.  

At this point, the received signal model, to be 

used for DoA estimation when the tag is either in the 

far-field or near-field, was established. 

2.1 FAR-FIELD AND NEAR-FIELD 
ASSUMPTION 

For far-field assumption, the antenna array 

geometry shown in Fig. 1 was used. Note that since 

the signal source was in far-field, the wavefronts 

were assumed to be on a plane. 

The backscattered signal from tag can be 

represented as 

    2
Re cj f t

x t s t e
     (1) 

 

 

 
Figure 1. Antenna Array Geometry for a Far-Field 

Assumption 

 

where Re[•] gives the real part of a function, s(t) is 

the complex envelope of the signal, fc is the center 

frequency, and t is time (Haykin, 1995). The signal 

that impinges at the i-th antenna has an associated 

attenuation factor and propagation delay. Thus, the 

received backscattered signal from a single tag (the 

validity of assumption that the signal is from a single 

tag only is based on the anti-collision protocol of an 

RFID system in which only one tag responds to the 

reader’s interrogation) can be expressed in the form 

      

    
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      (2) 

where ni(t) is an additive white Gaussian noise 

afflicting the i-th antenna (i = 0,1, 2,..., m – 1, where 

m = no. of antenna), αi is the attenuation factor of the 

backscattered signal. 

  From the array geometry shown in Fig. 1, 

the spatial frequency p in (2) can be written as a 

function of antennas’ interspacing d, and DoA θ: 

2 sinid
p

 


         (3) 
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Imposing narrowband assumption, i.e., the 

bandwidth of the signal is much smaller than the 

reciprocal of the transit time of the wavefronts across 

antenna array  1B
T

  makes    s t s t  , 

thus, the low pass equivalent of the backscattered 

signal that impinges to the antenna array with 

interspacing d becomes 

     jp

i i ix t s t e n t         (4) 

For the near field assumption, the wavefronts were 

assumed to be spherical rather than plane. Using the 

antenna geometry for near-field assumption shown 

in Fig. 2, the spatial frequency can be expressed as 

(derivation adapted from (Aberbour et al, 2008) and 

(Wang et al, 2006)). 

   2 2
2

c i i

c i

f r r r r
f

c

 
 



 
 

       

     (5) 

where ri denotes the distance of the signal source to 

the i-th antenna (i = 1, 2, 2N + 1), using the law of 

cosine then gives 
2 2

2

2 sin
1i

m d md
r r

r r


        (6) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Antenna Array Geometry for Near-field 

Assumption 

 

where m = –N, ..., –1, 0 1, ..., N. Using the binomial 

expansion theorem and assuming that d << r. 
2 2 2

2

sin cos
1

2
i

md m d
r r

r r

  
   

 

               (7) 

Thus, the backscattered signal impinges at the 

antenna array from a single tag is 

   
 2j pm qm

i ix t s t e
 

            (8) 

where 2 sind
p

 


   and 2 2cosd

q
r

 




. Note that the 

received signal is now a function DoA θ and of tag-to-

array distance r. Hence, it is needed to perform a 

high complexity three-dimensional search to estimate 

the DoA. In addition, most of the high resolution 

algorithm can only estimate the DoA of the signal. 

However, the proposed DoA estimation technique 

proposed in (Aberbour et al, 2008) and (Wang et al, 

2006) showed that by using two antenna, the 

expression for the covariance matrix of the received 

signal when using far-field assumption is the same 

when the signal source is in the near-field, i.e., the 

covariance matrix is a function of the DoA θ alone. 

Using the two-antenna model as shown in Fig. 3 with 

m = 0, 1 for the first and second antenna 

respectively, (8) can be express in matrix form as 

       t t t x a s n       (9) 

where      1 2

T

t x t x t   x
 
is the received signal, 

     
T

j p q j p q
e e
     

 
a is the steering vector, 

     1 2

T

t n t n t   n  is the AWGN vector. The 

covariance matrix R is given as 

    

   
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 

   





 
  

 

 

R x x

I

a a I

                  (10)   

where 
2

s represents the variance of the source signal 

power, 
2

n  is the noise is the noise variance, I is the 

identity matrix, and  
H

 is the Hermitian transpose 

of a vector or matrix. Note the R is independent of q, 
and therefore depend only in the DoA of the signal 

which is similar to far-field assumption. This implies 

that a high-resolution DoA estimation algorithm such 

as root-MUSIC (Schmidt, 1986) can be used for 

estimating the DoA. 

 
Figure 3. Two Element Antenna Array for Near-field 

DoA Estimation 
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2.2 ROOT-MUSIC ALGORITHM  
For the case of a uniformly spaced linear array 

(Naidu, 2000) with inter-element spacing d, the mth 

element of the steering vector a(θ) may be expressed 

as: 

   exp 2 cos ,      1,2,...,m

d
j m m M  



  
   

  
a

    (11) 

The MUSIC spectrum is an all-pole function 

of the form 

 
       

1 1
MUSIC H H H

n n

P 
   

 
a v v a a Ca

    (12) 

where 
H

n nC v v . Solving for the inverse of (12), 

1

1 1

2 2
exp cos exp cos

M M

MUSIC mn

m n

md md
P j j

 
 

 



 

   
    

   
 C

 

(13) 

where Cmn is the entry in the form of mth row and nth 

column of C. Combining the two summations into 

one, it can be simplified as 

1

1

2
exp cos

M

MUSIC l

n

d
P j l










 
  

 
C

 

     (14) 

where l mnm n l 
C C  is the sum of the entries of 

C along the lth diagonal. Then a polynomial D(z) was 

defined as follows, 

 
1

1

1

M

l

l M

D z C z




 

 
  

            (15) 

Evaluating the MUSIC spectrum PMUSIC(θ) 

becomes equivalent to the polynomial D(z) on the 

unit circle, and the peaks in the MUSIC Spectrum 

exist because the roots of D(z) lie close to the unit 

circle. Ideally, with no noise, the poles would have 

lied exactly on the unit circle at locations determined 

by the DOA. 

In other words, a pole of D(z) at z = z1 = 

|z1|exp(j arg(z1)) will result in a peak in the MUSIC 

spectrum at  1cos arg
2

z
d






 
  
 

. 

Consider  the covariance  matrix  given in  

(10), where  the steering vector can be rewritten as 

   

   
   
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Tj p q jp

Tj p q

j p q

e e

e z

e z


   

  

  

   





a

a

  (16) 

where z = e – jp and a(z) = [1  z]T. The covariance 

matrix can also be represented or decomposed via 

singular value decomposition as 
HR vDv     (17) 

where D is a 2 × 2 diagonal matrix, whose diagonal 

elements are λ1 and λ2. Assume that λ1 > λ2, then λ2 

corresponds to the power of the noise. It was noted 

that the eigenvectors of the noise subspace is 

orthogonal to the signal subspace, i.e., aH(θ)v2 = 0. 

The Root-MUSIC (Schmidt, 1986) spectrum is 

       1
2 2 2 2

1 1
root H H H H

P
z z  

 
a v v a a v v a

 

(18) 

The spectrum is maximized if z is 

1 2

jpz z e     (19) 

The roots were found to be identical to element R(2,1) 

of the covariance matrix R, then the DoA of the 

source can be obtained by 

 
1

arg 2,1
sin

2 d







       
 
 

R

       

 (20) 

where λ is the wavelength of the signal, arg() returns 

the argument or angle of the complex variable it 

contains, and d is the distance between the two 

elements. 

 

2.3 LEAST MEAN-SQUARES FILTER ALGORITHM 

The Least Mean-Squares algorithm is an 

adaptive filter algorithm that utilizes a gradient-

based method of steepest descent. Considering the 

Wiener (Wiener, 1942) filter 

     
0

ˆ
p

k

d n w k x n k


                        (21) 

where w(n) is the unit sample response of the finite 

impulse response (FIR) Wiener filter that produces 

the minimum mean square estimation of a desired 

process d(n), x(n) is a wide-sense stationary process 

data. The error in estimates is given by 

     ˆe n d n d n  , then the coefficients of the 

filter to minimize mean-square error E{|e(n)|2} are 

obtained by solving the Wiener-Hopf (Hayes, 1996) 

equations 

x dxR w r
    

                  (22) 

where Rx is the input data matrix and rdx is the result 

after using the filter coefficients to converge the data 

to their desirable values. However, if x(n) and d(n) are 

non-stationary processes, then the filter coefficients 

that minimize E{|e(n)|2} will be dependent on the n-

domain, and the filter will be time-varying 

     
0

ˆ
p

n

k

d n w k x n k


    (23) 
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where wn(k) is the value of the kth coefficient of the 

filter at a given time interval n. As a vector 

expression 

   ˆ T

nd n n w x   (24) 

where  

     0 , 1 , ,
T

n n n nw w w p   w  (25) 

is the coefficient vector of the filter at time n, and  

       , 1 , ,
T

n x n x n x n p    x  (26) 

Throughout time, it is necessary for the filter to 

obtain the optimum values for its coefficients. Hence, 

this problem may be simplified, if the need for wn to 

minimize the mean-square error at each time n has to 

be considered, by instead choosing a coefficient 

update equation of the form 

1n n n  w w w   (27) 

where Δwn is a correction applied to the coefficients of 

the filter wn at time n to form a new set of coefficients 

wn+1 for the next time interval n + 1. Assuming that w 

and x are complex, then the gradient is the derivative 

of E{|e(n)|2} with respect to w*. 

            
2 2

*n e n E e n E e n e n        (28) 

and  

   * *e n x n     (29) 

it follows that  

      *n E e n n   x   (30) 

Thus, with a step-size of μ, the steepest descent 

algorithm is obtained 

    1 *n n E e n n  w w x   (31) 

which leads to the least mean squares algorithm. 

   1 *n n e n n k   w w x   (32) 

 

2.4 ADAPTIVE UNIFORM LINEAR ARRAY DESIGN 

Considering a general beam-former uniform 

linear array with N isotropic elements, the following 

figure is conceived for this study. However, this 

paper only focuses on using a two-element ULA. The 

inclusion of the LMS filter is then integrated to 

enhance the accuracy of the estimates. 

The output of the beam-former y(n) is then 

compared to the desired signal to be received and the 

difference between the two is the error that must be 

fed into the LMS Update Algorithm for the purpose 

of optimizing the filter coefficients for the next time 

interval. 

 
Figure 4. The proposed adaptive beam-former 

ULA with LMS 

 

3. RESULTS AND DISCUSSION 

3.1 SIMULATION OF DOA ESTIMATION 

 Simulations are executed through the use of 

computer software MatLab® to analyze the 

performance of the least-mean square filter in 

enhancing the accuracy of extracting DoA estimates. 

In the following cases, the signal from the source tags 

were impinging from various angles relative to the 

broadside of the two-element uniform linear array 

antenna system designed at the reader device. The 

spacing between the elements was half a wavelength 

of the working frequency of a passive RFID tag 

system, fc = 915 MHz, and the distance of the source 

tag from the array was irrelevant and was assumed 

to be fixed given that it was still within the scope of 

the reader’s signal reception area. Noise was added 

to the modeled received signal from the tag, and was 

characterized as additive, white and Gaussian 

distributed with zero mean and unity variance. The 

range of signal-to-noise ratio used was limited from – 

5 dB to 5 dB since passive RFID systems operate on 

relatively low-power applications. Thus, the 

eigenvalues of the covariance matrix formed were 

computed and the highest value obtained is 

approximately 7. This indicates an upper limit (0 < μ 

< 2/λmax = 2/7) for the step-size that can be used for 

the LMS filter in order to achieve convergence of the 

DOA estimation (Hayes, 1996). The step sizes chosen 

to be analyzed in this experiment are μ = 0.005, 

0.002 and 0.001. The number of samples was held 

fixed at 100 snapshots. 

 

 

 

 

 

Table 1. Comparison of Actual and Computed DoA 
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A bigger step-size used for the LMS filter 

reduced a very small amount of error in the DoA 

estimates while a smaller one totally eliminated the 

effect of noise in the received signal, therefore 

resulting to a more accurate DoA estimate. 

The pseudospectrum obtained through the 

use of root-MUSIC algorithm was presented and 

analysis was done in comparison with the procedure 

that includes the addition of the least-mean square 

filter algorithm to mitigate noise significantly so that 

the DOA estimates extracted from the received signal 

becomes more accurate.  

The following figures 5 through 8 present 

the pseudospectrum of the angle bearings presented 

in Table 1. The peaks of each magnitude in dB were 

indicative of the poles of (12) of each case, which were 

extracted by the root-MUSIC algorithm before 

converting into angle bearings in degrees. 

 

 

Figure 5. Pseudospectrum at 45     

 

 

 
Figure 6. Pseudospectrum at 0    

 

 
Figure 7. Pseudospectrum at 30    

 

 
Figure 8. Pseudospectrum at 60    

 

The results of the simulation in this section 

used the standard deviation error formula, also 
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known as the root-mean-square error (RMSE), given 

as 

       

 
2

1

1 ˆ
N

i

i

RMSE
N

 


    (33) 

where N is the number of samples or snapshots,   is 

the true DoA and ̂  is the estimated DoA of the ith 

sample. The angle θ was held fixed at 30° and the 

number of samples was still at 100 snapshots of 

received data. Signal-to-noise ratio was varied from – 

5 dB to 5 dB. 

 
Figure 9. Convergence of DoA Estimation in Varying 

SNR 

 

The DoA estimates were virtually error-free 

when LMS algorithm is used with a μ = 0.001 before 

extracting the angle. The step-size was small enough 

to eliminate the effect of noise in the received signal 

despite the channel was very noisy which was 

indicated by a negative SNR.  

The number of samples had also been varied 

to study the convergence of DoA estimates as they are 

extracted using root-MUSIC algorithm.  

 
Figure 10. Convergence of DoA Estimation in Number 

of Samples 

 

Employing the LMS filter significantly 

helped in the convergence of the DoA estimates as 

the number of sample or snapshots increases. 

Adjusting the step-size to a smaller one increased the 

resolution of the accuracy. Even with just one 

sample, using LMS filter with μ = 0.001 can totally 

eliminate the effect of noise and distortion. Hence, 

the DoA extracted converged immediately to its true 

value when the filter, with the right step-size, was 

used. 

 

4.  CONCLUSIONS 
In this study, a passive RID tag system was 

considered and the direction-of-arrival of a tag was 

estimated through the use of root-MUSIC 

algorithm. A two-element ULA was designed at the 

front-end of the reader to compute for the DoA 

using a beam-former. The least mean-squares 

algorithm was used to mitigate the effects of noise 

in the received signal before extracting the angle 

using root-MUSIC. Comparison was done between 

the methods of using root-MUSIC algorithm only to 

that of implementing an LMS filter to reduce the 

effect of noise before determining the DoA through 

root-MUSIC. The variation in step-size in using the 

filter was also considered and results were 

compared and analyzed. It was found out through 

this work that the use of adaptive filter algorithm 

Least Mean Squares Algorithm, with the right step 

size that is small enough (μ = 0.001) for the output 

to converge to the true value, can significantly 

reduce, if not eliminate, the effect of noise that can 

distort the DoA estimate. If the step-size is not 

small enough, the convergence can still be achieved 
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by increasing the number of samples or increasing 

the signal-to-noise ratio of the received signal by 

powering up the back-scatter signal received from 

the passive tag.  
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