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Abstract: We considered in this paper a general relativistic treatment of dynamics in galaxies. In 

particular, we studied the first-order correction to Newtonian gravity by using linearized 

gravitation to determine the equation of motion of star systems in galaxies.  This is carried out by 

first finding out how first-order deviation from flat spacetime which is generated by the potential 

of the galactic disk.  The resulting metric was then used to determine the Christoffel symbols, 

which when included in the geodesic equation yielded the equation of motion.   

 

1. INTRODUCTION 

The velocity curves of some galaxies, which at some distance from galactic centers, were 

shown to no longer vary with distance are peculiar because they are contrary to the predictions 

using Newtonian mechanics and Newtonian gravitation, that speed be inversely proportional to 

the distance.  

Solutions suggested varied from dark matter (Faber & Gallagher, 1979), modification of 

Newtonian dynamics (Bekenstein J. D., 2007), or non-Newtonian gravity (see for example, Van 

Nieuwenhove, 2007). It should be noted that galactic dynamics are typically analyzed using 

Newtonian gravity and Newtonian dynamics. Dark matter theories essentially accept the validity 

of both Newtonian gravitation and dynamics but postulate the existence of unseen matter which 

by some calculations account for 25% of the energy in the Universe (Faber & Gallagher, 1979). 

Since the advent of Einstein’s General Theory of Relativity, it has been generally 

accepted that Newtonian gravity is but the weak-field limit of Einstein’s theory.  Standard theory 

of galactic dynamics are however to this day generally Newtonian in orientation.  Recently, there 

have been attempts to fit the observed velocity curves within the framework of Einstein’s theory. 

The objectives of these studies had been to find the potentials that would be consistent with the 

observed velocity curves (Cooperstock & Tieu, 2006).  

We applied in this study the converse approach. Using the potentials known to apply to 

galaxies, particularly that of the galactic disk, we considered a linearized gravity approximation 

to General relativity to obtain the equations of motion of the galaxy. 
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2. LINEARIZED GRAVITY 

In the weak field limit, gravity can be treated as a perturbation theory where 

ab ab abg            
(Eq. 1)

 

where g is the metric of the spacetime manifold,  is the Minkowski metric, and  the 

perturbation. The Einstein tensor may then be cast as  
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(Eq. 2) 

With a gauge transformation  

1

2
ab ab ab            

(Eq. 3)
 

the linearized Einstein equation becomes  

16c
c ab abT            

(Eq. 4) 

The problem boils down to one of determining the perturbation . For this study, we assume that 

just beyond the Newtonian limit, the gravitational potential  still satisfies the Poisson’s 

equation 

Ñ2g
00

:=Ñ2F = -16r        
(Eq. 5) 

Under this condition, the perturbation  may be obtained using (Wald, 1984)
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3. DYNAMICS OF GALACTIC DISKS 

Dynamics on galactic disks are generally described by the potential (Binney & Tremaine, 

2008)  
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(Eq. 7)
 

where cR  and 0v   are constants, and Φq is the axis ratio of the equipotential surfaces which 

controls the flattening of these surfaces. This potential satisfies the Poisson’s equation. For such 

a potential, it is convenient to work with cylindrical coordinates, thus with the Minkowski metric 

 = diag (-1, 1, R
2
, 1), Eqs. 6 and 7 yield the following perturbation terms: 
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(Eq. 9)
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(Eq. 10)
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All other  are zero. 

 The equations of motion may be obtained from the geodesic equations 
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(Eq. 12)
 

where  are the christoffel symbols, which in the linearized gravity limit are 
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(Eq. 13)
 

Applying Eqs. 8 – 11 and Eq. 13 to Eq. 12, we obtain the equations of motion 
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(Eq.14) 
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(Eq.17)
 

 

4. DISCUSSIONS 

We have determined in this paper the geodesic equations using linearized Einstein’s 

equation. Preliminary results show that when the logarithmic potential (Eq. 7) of the galactic disk 

was incorporated in the perturbation term , the effect on the galactic dynamics is complex. 

Evidently, the geodesic equations (Eq.14 to Eq.17) are coupled nonlinear differential equations. 

Further calculations may be done to solve for the velocity curves of the disk galaxy from these 

geodesic equations. Then the results can be compared to what is expected in Newtonian theory.  
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