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Abstract: A challenge faced in the quantization of the gravitational field, and its possible 

unification with other interactions is that gravitation is described differently from the other 

three fundamental forces – weak, strong, and electromagnetic.  While Einstein’s gravitational 

theory is a geometric theory, the standard model of particle interactions which describes the 

other three forces is field theoretic. In this paper, we showed that a field theoretic 

gravitational theory can be developed by considering a gauge theory of the Poincaré group.  

Symmetry under a local Poincaré transformation requires the introduction of six rotational 

gauge fields and four translational gauge fields. We then showed that application of the 

minimum action principle to a simple free-field Lagrangian can lead to the Einstein’s field 

equations, with the translational fields being related to the energy-momentum tensor.  The 

existence of the rotational gauge fields however leads to torsion, so the resulting gravitational 

theory is potentially more general than Einstein’s theory.  Since torsion is related to spinning 

matter, and spin averages out on a sufficiently large scale, the torsion-free Einstein theory 

could be considered as the spin-free limit of the gauge theory. Quantization of the field on the 

other can proceed in a manner similar to those of other interactions. 
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1. INTRODUCTION 

 

Unification of the fundamental forces of nature has so far been successful only with 

the electromagnetic, strong, and weak interactions.  The main difficulty that one encounters 

in trying to unify gravitational forces with the other three is that traditionally, gravitation has 

been a geometric theory, whereas the other three are field theories.  It is the objective of this 

paper then, to bridge this gap in language, by resenting a gauge-theoretic approach to 

gravitation. The form of interaction between well-known fields, such as electromagnetic and 

Yang-Mills fields can be determined by postulating invariance of the action under a group of 

transformation.  It will be shown in this paper that under a Poincaré transformation, we are 

led to a theory of gravitation.  One significant difference of the resulting theory with 

Einstein’s theory is the presence of torsion.  It will be shown that torsion is associated with 

the spin of matter. Spin is expected to average out in the large, so we expect this theory to 

reduce to a torsion-free model, just as Einstein’s theory is. Einstein’s theory has been 

successfully tested in the macroscopic scale, but it is not taken to be valid in the microscopic 

scale.  While some approaches to quantum gravity have shown promise, it is today still an 

open field.  It is largely believed that unification of gravity with the other forces will manifest 

itself in a successful theory of quantum gravity. 
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2. GAUGE THEORY 

 

Systems of particles may be described by Lagrangians L =T -V  where T is the 

kinetic energy and V the potential energy.  The Lagrangian is taken to be a function of 

generalized coordinates q and velocities q .  By Hamilton’s principle, the motion of a classical 

particle is obtained when the action S = L q,q( )dtò   is minimized.  This principle of least 

action leads to the equation of motion 

  
d
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= 0       (Eq. 1) 

If the system is symmetric under some transformation, say q  q’ = Aq, where A is 

the transformation operator, the Lagrangian remains invariant under the transformation. This 

consequently leads to a conservation law 
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Fields may likewise be described by a Lagrangian density  L from which 

minimization of the action  leads to the field equations 

       (Eq. 3) 

If the system is symmetric under a global transformation dy A =eaT
aB

AyB  ,where  is a 

constant parameter, and T are the generator of the Lie group T
a
,T
b

é
ë

ù
ûB

A

= f
ab

cT
cB

A , the 

Lagarangian is invariant, and we have the conservation law J
a,m

m º ¶
m
J
a

m = 0  with the 

conserved current being 

        (Eq. 4) 

Under a local transformation where the parameter  varies with position, e a =ea x( ) , 

      (Eq. 5) 

For the Lagrangian to remain invariant, a new field B
J
 has to be introduced to compensate for 

the term on the right side of Eq. 5.  Hence, we must now recast the Lagrangian as 

. This Lagrangian is invariant under the local transformation 

dy A =ea x( )TaB
AyB

, provided that the gauge field transforms as dBJ =U
aK

J BKea(x)+C
a

Jme
,m

a . 

For then, the following relations can be ensured for arbitrary , 

   (Eq. 6) 

     (Eq. 7) 
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The last equation implies that A and  may appear in the Lagrangian only through the 

covariant derivative D
m
y A ºy

,m

A -T
aB

AyBA
m

a , where we redefined the gauge field as 

A
m

a = C-1( )
mJ

a

BJ . Eq. 6 may then be recast as 

 (Eq. 8) 

where S
cbm

an = C-1( )
mJ

a

U
cK

J C
b

Kn .  We then note that dD
m
yA =T

aB

AD
m
yBea (x),  and 

dA
m

a = f
cb

aA
m

be c(x)+e
,m

a . Thus, a system cannot retain its symmetry under a local 

transformation unless we consider it as part of a larger system.  This means that the system 

can no longer be treated in isolation and interaction must be brought into the picture. With the 

introduction of a gauge field, it is imperative that we also include the free Lagrangian of this 

field: .  To preserve the gauge invariance of the overall Lagrangian, this “free-

field” Lagrangian must also be invariant under the transformation.  Taking the coefficients of 

, , , and ,, in L separately, we have 

     (Eq. 9) 

      (Eq. 10) 

      (Eq. 11) 

The last equation indicate that A, enters the Lagrangian only through A
m ,né

ë
ù
û

a º A
m ,n

a - A
n ,m

a . Eq. 

10 thus gives 

      (Eq. 12) 

which in turn suggests that A and A, appears in the Lagrangian only through 

F
mn

a = A
m ,né

ë
ù
û

a - 1
2
f
bc

a A
m

bA
n

c -A
n

bA
m

c( ) . This further implies that the Langrangian is a function of F 

alone: .  Applying to Eq. 9 then gives 

        (Eq. 13) 

We also note that dF
mn

a =eb(x) f
bc

aF
mn

c . 
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3. GAUGE THEORY OF THE POINCARÉ GROUP 

 

Let us consider the transformation xi®pxi := xi +w
j

i x j +e j , and 

y(x)® pyé
ë

ù
û x( ) := 1+wab f

ba
-ea¶

a( )y x( ) . We assume the spacetime to be locally 

Minkowskian and denote the local variables by greek indices.  Latin indices refer to the world 

frame.   are rotation parameters while  are translation parameters ea :=ea +w
b

ad
i

bxi , and 

wab =wab . Suppose the generators of rotation f , and that of translation  = 
i
i , satisfy 

the algebra of the Poincaré group (a) f
ab

, f
gd

é
ë

ù
û= g

g aéë
f
bù

ûd
- g

d aéë
f
bù

ûg
, (b) f

ab
,¶

g
é
ë

ù
û= g

g aéë
¶

bù
û
 , 

and (c) ¶
a
,¶

b
é
ë

ù
û= 0, where g are the metric tensor. Since Poincaré transformation is a 

spacetime transformation, we require not only the invariance of just the Lagrangian but that 

of the action instead 

  (Eq. 14) 

If we let 

        (Eq. 15) 

        (Eq. 16) 

S
abé

ë
ù
û
= ¶

i
x
j
d

aéë

j S
bù

û

i( )       (Eq. 17) 

Application of the transformations to Eq. 14, yields the field equations 

  ¶
i
t

ab

i - S
abé

ë
ù
û
= 0,   ¶

i
S

a

i = 0   (Eq. 18) 

under a global Poincaré transformation. In a local Poincaré transformation, 

dS = d 4x -¶
i
wab( ) t

ba

i + x
b
S

a

i( ) + ¶
i
ea( )S

a

i{ }
W
ò

= d 4x -¶
i
wab( )t ba

i + ¶
i
ea -w

b

ad
i

b( )S
a

i{ }
W
ò

    (Eq. 19) 

Local gauge invariance is preserved only if we introduce six rotational gauge potentials 

[]
i(x) and four translational gauge potentials ei


(x) so that  

and dG
i

ab ~ ¶
i
wab

, de
i

a ~ w
b

ad
i

b -¶
i
ea , , . Now, under a global 

transformation, the rigidity condition p x i¶
i
y( ) = pxa( )da

i¶
i

py( )holds.  But under a local 

transformation. 
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p x i¶
i
y( ) = pxa( )da

i¶
i

py( ) +x i - f
ab

¶
i
wab + ¶

i
ea -w

b

ad
i

b( )¶a

é
ë

ù
ûy

» pxa( ) d
a

i +de
a

i( ) ¶
i
+dG

i

ba f
ab( ) py( )

  (Eq. 20) 

This suggests the following minimal substitution schemes:d
i

a ® e
i

a  , ¶
i
®D

i
=¶

i
+G

i

ab f
ab

. 

With these, the field transformation becomes y x( )® pyé
ë

ù
û x( ) = 1+wab f

ba
-eaD

a( )y x( )  

and the Poincaré group algebraic relations becomes 

f
ab

,D
g

é
ë

ù
û= g

g aéë
D

bù
û
      (Eq. 21) 

D
a
,D

b
é
ë

ù
û= e

a

i e
b

j F
ij

gd f
dg

-F
ij

gD
g( )     (Eq. 22) 

where 

F
ij

gd := 2 ¶
iéë
G
jùû

gd + G
iéë

agG
jùû

bdg
ab( ) = -F

ij

dg     (Eq. 23) 

F
ij

g := 2 ¶
iéë
e
jùû

g +G
iéë

age
jùû

bg
ab( ) = 2D

iéë
e
jùû

g     (Eq. 24) 

The rigidity condition becomes p x i¶
i
y( ) = pxa( ) eai +de

a

i( ) Di +dG
i

ba f
ab( ) py( ) , giving us 

  dG
i

ab = -D
i
wab -egF

gi

ab      (Eq. 25) 

  de
i

a =w
b

ae
i

b -D
i
ea -egF

gi

a      (Eq. 26) 

The variation of the Lagrangian gives 

       (Eq. 27) 

       (Eq. 28) 

  D
i
et

ab

i - S
abé

ë
ù
û
= 0      (Eq. 29) 

  D
i
eS

a

i = F
ai

bget
bg

i +F
ai

bS
b

i      (Eq. 30) 

where e = dete
j

i . The field tensors given by Eqs.  23 and 24 may be compared with the 

Riemann tensor 

R
ijk

    m = e
k

ae
b

mF
ija

    b       (Eq. 31) 

and the Cartan torsion tensor, 

  S
ijk

= 1
2
e

a

kF
ij

  a        (Eq. 32) 

respectively.  The simplest free field Lagrangian of the gauge fields is 

     (Eq. 33) 

Minimization of the total action  then gives 

  D
j
ee

aéë

i e
bù

û

j( ) = ekt
ab

i
      (Eq. 34) 
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F
ba

   ib - 1
2
e

a

jF
bg

   gb = kS
a

i       (Eq. 35) 

For 

  T
ij

  k := S
ij

  k + 2d
aéë

k S
jùûm

     m      (Eq. 36) 

  Gij := Rij - 1
2
Rgij       (Eq. 37) 

Eqs. (34) and (35) give 

  T ijk = kSijk        (Eq. 38) 

  Gij = kSij        (Eq. 39) 

 

The former gives the torsion of the spacetime and eqn. latter is none other than Einstein’s 

field equation. 

 

 

4. PHYSICAL INTERPRETATION 

 

In doing a Poincaré gauge transformation, we have shown that without any reference 

to geometry, we are able to obtain the Einstein’s equation, albeit in a non-Torsion-free 

universe. Invariance under a local Poincaré transformation require the introduction of an 

antisymmetric rotational gauge potential, which is associated with spin.  A translational 

gauge potential is likewise required and this is related to the energy-momentum tensor. A 

comparison of this theory and the geometric theory indicate that rotational potentials related 

to the connection, while translation potentials to the orientation of the local (vierbein) frames 

in spacetime. As hoped for, the dynamically defined currents (27) and (28) for local 

transformation agree with that of special relativity (15) and (16), for global transformation.  

The conservation law of energy-momentum (30) implies that both gauge fields act upon the 

corresponding source, while the conservation law of angular momentum (29) indicates that 

the gauge fields do not exert torques on the matter distribution.  Equation (38) indicate that 

torsion exists only inside spinning matter.  Hence spin manifests itself only by means of its 

influence on the metric tensor.  A gauge theory of Poincaré transformation yields a non-

torsion-free theory.  In the macroscopic limit where spin averages out, the theory can reduce 

to Einstein’s gravitational theory. 
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