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Abstract: In this study, four QSAR models predicting LD50 of microcystins (MCs) were 
generated. The structures of the compounds were obtained from the literature. The data were 
divided into two sets: training set (N=20) and test set (N=3). All 3-D structures of these MCs 
were optimized by semi-empirical method, PM3 prior to calculations of 197 GETAWAY 
molecular descriptors. Multiple linear regression (MLR) using stepwise method was applied to 
determined significant descriptors and QSAR models. The method generated five significant 
descriptors and four QSAR models. The predictive powers of these models were evaluated by 
applying the following statistical parameters for the training set and test set: Pearson R (R), 

coefficient of determination (R2), leave-one-out Q2 (LOO Q2), R2
M, internal R2 prediction (R2

pred), 

root-mean-square error for prediction (RMSEP), goodness-of-fit chi squared test (). Internal 

validation of Model 4 (N = 20) revealed that it has the highest predictive power (R = 0.953; R2 = 

0.908; LOO Q2 = 0.838; R2
M = 0.743; RMSEP = 1.288, = 0.324). External validation (using the test 

set, N=3) showed that Model 4 (LN LD50 = 52.554 (5.803) - 2.589 (1.409)H3e - 10.113 (1.960) 

R8e + 245.321(70.521)R2v-10.396(2.460)H4p+317.169 (121.689)R8p+) has the highest 

predictive power (R = 0.925; R2 = 0.855; R2
pred = 0.780; R2

M = 0.530, RMSEP = 0.233; = 0.037). 
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1. INTRODUCTION 
 

Microcystins (MCs) are cyclic nonribosomal peptides produced by cyanobacteria, and 

possess the generalized structure, cyclo (-D-Ala-X-D-MeAsp-Y-Adda-D-Glu-Mdha-) (Botes et al., 

1982, 1984). They are cyanotoxins which are harmful to plants, animals and humans. Microcystins 
can strongly inhibit protein phosphatases type 1 (PP1) and 2A (PP2A) (MacKintosh et al., 1990). 

Furthermore, they cause serious damage to the liver (Chorus et al., 2000). To date, there are 86 

microcystins reported in the literature, but only 36 have been evaluated for their toxicities (LD50) 

(Zurawell, Chen, Burke, & Prepas, 2005). The difficulty in the establishment of their toxicities may 

be due to the separation, purification and scarcity of the MCs prior to laboratory testing. However, 
evaluating the toxicities of compounds is important because it gives us insight about the possible 
effects of unknown compounds to public health. 
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Figure 1. Structure of Microcystin-LR: 

Position (1) D-alanine (2) L-leucine (3) D-

erythro-b-methylaspartic acid (4)L-

Arganine (5) formula (2S,3S,8S,9S)- 
3-amino-9-methoxy-2,6,8-trimethyl-10-

phenyldeca-4,6-dienoic acid (6) glutamic 

acid (7) N-methyldehydroalanine 

(Zurawell, Chen, Burke, & Prepas, 2005) 
 

 

 

 

 

 

 

Alternatively, quantitative structure-activity relationship (QSAR) models allow us to predict 

toxicities using molecular descriptors of these compounds without undergoing tedious animal and 

laboratory testing (Verma, J, Khedkar, V. M., and Coutinho, C. E., 2010). Currently, there are more 

than 3000 molecular descriptors that are used in QSAR studies (Todeschini, R and 

Consonni,V.,2009). These are categorized into different types: 0D, 1D, 2D, and 3D molecular 

descriptors (Todeschini, R. et. al., 1994; Xue, L., Bajorath, J., 2000). 
 
 

GETAWAY (GEometry, Topology, and Atom Weights AssemblY) is a set of 3D molecular 

descriptors that try to match 3D molecular geometry provided by the molecular influence matrix and 

atom relatedness by topology with chemical information by different atomic weighting schemes such 
as unit weights, mass, polarizability, electronegativity. GETAWAY descriptors have low or no 

degeneracy at all, which avoids getting the same value for a descriptor for more than one compound 

sharing the same structural features. The molecular influence matrix, H is defined by 
 

H = M · (MT ·M) ·MT (Eq. 1) 
 
 

where M is the molecular matrix. The resultant A x A matrix is invariant to rotation of the molecular 
coordinates. The diagonal elements hij are termed leverages and represent the influence of each atom 

in determining the shape of the molecule. Each off diagonal element hij, represents the degree of of 

accessibility of the j'th atom to interactions with the i'th atom (V. Consonni and R. Todeschini, 2002). 
 
 

In the present work, we report our preliminary QSAR models for predicting LD50 of 

microcystins found in cyanobacteria using GETAWAY descriptors, obtained from multiple linear 
regression (MLR) method. 
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2. METHODOLOGY 
 
 

The structures of the 24 MCs were obtained from the literature (Zurawell, Chen, Burke, & 
Prepas, 2005). The data were divided into two sets: training set (N=20) and test set (N=4). All 3-D 
structures of these MCs were optimized by semi-empirical method, PM3 using Hyperchem 
(Hypercube Inc.) prior to calculations of 3D molecular descriptors, GETAWAY, using Dragon 
(Talete SRL). Multiple linear regression (MLR) using stepwise method was applied to determined 
significant descriptors. The predictive power of these models were evaluated by applying the 

following statistical parameters for the training set and test set: Pearson R (R), coefficient of 

determination (R2), leave-one-out Q2 (LOO Q2), R2
M, internal R2 prediction (R2

pred), root-mean-

square error for prediction (RMSEP), goodness-of-fit chi squared test (). All statistical analyses 
were performed using SPSS software. 
 
 

3. RESULTS AND DISCUSSION 
 

In order to predict the toxicity of different MCs, GETAWAY descriptors were calculated to 
characterize the structural features of 20 compounds. The five descriptors (out of 197) selected by 

stepwise MLR method were employed to generate QSAR models for predicting LD50 of MCs. These 

5 descriptors are listed in Table 1. These descriptors belong to H-GETAWAY descriptors, which 
have been calculated from the molecular influence matrix H, and R-GETAWAY descriptors, which 
are from the influence/distance matrix, R, where the elements of the molecular influence matrix (H) 

are combined with those of the geometry matrix (V. Consonni and R. Todeschini, 2002). 
 

Table 1. GETAWAY Descriptors 

GETAWAY Name 
Descriptors 

H3e 

 

H autocorrelation of lag 3 / weighted by atomic Sanderson electronegativities 

 R8e 
 

R autocorrelation of lag 8 / weighted by atomic Sanderson electronegativities 
 R2v+ 

 
R maximal autocorrelation of lag 2 / weighted by atomic van der Waals volumes 

 
 

H4p H autocorrelation of lag 4 / weighted by atomic polarizabilities 
R8p+ R maximal autocorrelation of lag 8 / weighted by atomic polarizabilities 

 
 

Table 2. Pearson correlation matrix of parameters used in Model 1-4 

H3e R8e R2v+ H4p R8p+ 

H3e 1 
 

R8e -0.285 1 

R2v+                0.153              -0.151 
H4p 0.806(**) -0.350 

R8p+                0.053               0.210 
** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 

 
 

1 
0.481(*) 1 

0.590(**) 0.395 1 
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Model 1 has H3e and R8e as significant descriptors; these explain 70.5% variance in 
LN LD50 of MCs. The two descriptors are not significantly correlated (Table 2), which indicates 

that the H3e and R8e are independent to each other. The coefficients of H3e and R8e have 
negative signs which show inverse relationship with the LN LD50. 

 
Model 1 

LN LD50 = 58.228(8.897) -7.365(1.168)H3e - 7.277 (2.726) 

R8e N =20, F = 20.306, SE =0 .375 (P < 0.001) R = 0.840 , R = 
0.705 

 
 

Model 2 has H3e, R8e, R2v+, as significant descriptors and these explain 78.8% variance 

in LN LD50 of MCs. These three descriptors are uncorrelated. 
 

Model 2 
LN LD50 = 55.981 (7.829) -7.664 (1.028)H3e - 6.596(2.726) R8e + 

183.892(73.553)R2v+ N =20, F = 19.802, SE =0.214 (P < 0.001) R = 0.888, R2 = 0.788 
 
 

Model 3 has four significant descriptors, H3e, R8e, R2v+, and H4p. These explain 86.3% 
of variance in LN LD50. However, H4p is correlated with H3e, and H4p is correlated with R2v+. 

These indicate that these variables have multiplicative interaction effect on LN LD50. 
 
 

Model 3 
LN LD50 = 50.442 (6.765) -3.991 (1.533)H3e - 7.643 (2.020) R8e + 316.970 

(76.462)R2v+ -7.336(2.546)H4p 
N =20, F = 23.709, SE =0.147 (P < 0.001) R = 0.929, R2 = 0.863 

 
 

Model 4 has five significant descriptors, H3e, R8e, R2v+, H4p, and R8p+. The 

descriptors explain 90.8% of variance in LN LD50. Like in model 3, model 4 has correlated 

variables, R2v+ and R8p+. The descriptors H3e, R8e and H4p are inversely related to LN LD50. On 

the other hand, R2v+ and R8p+ are directly related to LN LD50. 
 

Model 4 
LN LD50 = 52.554 (5.803) - 2.589 (1.409)H3e - 10.113 (1.960) R8e + 245.321(70.521)R2v 

-10.396 (2.460)H4p+317.169 (121.689)R8p+ 
N =20, F = 27.652, SE =0.106 (P < 0.001) R = 0.953, R2 = 0.908 

 
 

We used Models 1-4 to predict the toxicities of the MCs in the test set (N=4) without 
considering the multiplicative interaction. Table 3 shows the predicted and observed LN LD50 for the 

MCs in the training set and test set. 

2 
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Table 3. Observed and Predicted LN LD50 of Microcystins using Model 1-4 

Microcystins (MCs) (ref) Obs. LN Pred. LN Pred. LN Pred. LN 
LD50 LD50(1) LD50(2) LD50(3) 

1 Microcystin-YR * 4.2485       4.9968         5.0618         4.7909 
2 Microcystin-YM(O) 4.0254 4.3356 4.3923 3.7680 

3 Microcystin-YA. 4.1744 4.3010 4.2997 4.1326 

4 Microcystin-M(O)R 6.6201 5.6849 6.5486 6.5699 

5 Microcystin-LY** 4.4998 4.5103 4.2649 3.9018 

6 Microcystin-LR 3.9120 4.7024 4.6556 4.4217 

7 Microcystin-LA 3.9120 3.5801 3.8253 3.9020 

8 Microcystin-FR 5.5215 5.2193 5.6787 5.5668 

9 Microcystin-AR. 5.5215 6.2821 6.0735 5.5820 

10 [L-MeAla7]Microcystin-LR 4.4427 4.3358 4.2927 4.1601 

11 [D-MeAla7]microcystin-LR* 4.6052 4.3872 4.3452 4.3531 

12 [DMAdda5]Microcystin-LR 4.5539 4.4179 4.3088 4.4306 

13 [Dha7]Microcystin-RR 5.1930 5.6711 5.3596 5.3855 

14 [Dha7]Microcystin-LR 5.5215 4.8894 4.8003 4.8951 

15 [D-Asp3]Microcystin-RR 5.5215 5.5136 5.2455 5.1848 

16 [D-Asp3]Microcystin-LR 3.9120 4.8050 4.7564 4.7856 

17 [D-Asp3]Microcystin-HtyR* 5.4381 4.5720 4.9329 5.3871 

18 [D-Asp3, Dha7]Microcystin-LR 5.4161 5.1019 5.0098 5.3555 

19 [D-Asp3, ADMAdda5]Microcystin-LR 5.0752 4.4468 4.4140 4.6309 

20 [D-Asp3, (E)-Dhb7]Microcystin-RR 5.5215 5.1886 5.0815 5.3627 

21 [D-Asp3, (E)-Dhb7]Microcystin-LR 4.2485 4.2598 4.1882 4.4499 

22 [D-Asp3, (E)-Dhb7]Microcystin-HtyR 4.2485 4.4558 4.4617 4.6823 

23 [ADMAdda5]Microcystin-LR 4.0943 4.5197 4.2982 4.1776 

24 [6(Z)-Adda5]Microcystin-LR.hin 7.0901 6.8145 6.8348 7.0817 
 

Pred. LN LD50(4) 
4.4156 4.1490 4.1798 6.7029 3.9005 4.3372 3.7319 5.2904 5.3098 4.0752 4.3296 

4.5885 5.4707 5.0481 5.1340 4.5069 5.1592 5.3225 4.9994 5.3406 4.2604 4.5748 

4.2319 7.2712
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*Test Set (N = 4) ** Removed from Test Set 
 

The predictive power of these models were evaluated by applying the following statistical 

parameters for the training set and test set: Pearson R (R), coefficient of determination (R2), leave-

one-out Q2 (LOO Q2), R2
M, internal R2 prediction (R2

pred), root-mean-square error for prediction 

(RMSEP), goodness-of-fit chi squared test (). The values for each model are summarized in Table 
4. 
 
 

Internal validation of the training set (N = 20), revealed that the four models are generally 

have good prediction power (R2 > 0.6, LOO Q2 > 0.6, R2
M.>0.5, RMSEP <1, < 0.5) (Veerasamy1, 

R., et. al., 2011). Among the four models, model 4 has the highest prediction power. Furthermore, the 
usefulness of the model was tested by its ability to predict the toxicities of MCs in a test set. These 
compounds in the test set were not used for generating QSAR models. 
 

Table 4. Predictive Statistics for Training Set 

Model R R2 LOO Q2 R2
M RMSEP

  1             0.840        0.705           0.605            0.573           
1.245              0.977 2             0.888        0.788           0.712            0.630           
1.273              0.737 3             0.929        0.863           0.898            0.699           
1.264              0.499 4              0.953        0.908           0.838            0.743           
1.288              0.324 

 
 

7.5 
 

7 y = 0.908x + 0.453 
6.5                  R² = 0.908 

6 
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Figure 2. Plot of Predicted versus Observed LN LD50 of Microcystins (N=20) using Model 4 
 

For external validation, we applied the four models to predict the toxicities of four MCs in 
the test set. Initial calculations revealed that MC 5 is poorly predicted by the model. This might be 
due to the structural features of MC 5 that were not similar to that of MCs in the training set. Hence, 
we decided to remove it from the test set. The remaining three MCs in the test set were re-evaluated 
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using the four QSAR models. Results show that model 4 successfully predicted the LN LD50 of the 

three MCs (Table 5). 
 
 

Table 5. Predictive Statistics for Microcystins (1, 11, 17) in the Test Set 

Model R R2 R2
pred R2

M RMSEP  
1 -0.497 0.247 -0.647 0.033 0.116 0.280 
2                0.058 0.003 -0.194          6.11x10-6 0.146 0.217 
3                0.744 0.553                0.563 0.184 0.279 0.084 
4                0.925 0.855                0.780 0.530 0.233 0.037 

 
 

5. CONCLUSIONS 
 

The QSAR models for the toxicities of 20 microcystins have been obtained by MLR method 

and using three-dimensional descriptors, GETAWAY. The best MLR model has five descriptors . 

These descriptors are related to the three-dimensional distribution of electronegativities, van der 

Waals volumes and polarizabilities of atoms in MC. The selected descriptors effectively discriminate 

substituents of different amino acids composition of MCs. This model successfully predicted the 

toxicities of MCs in the test set (N=3). 
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