

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

1

COMPARATIVE ANALYSIS OF RELATIONAL AND

NON-RELATIONAL DATABASE MODELS FOR SIMPLE QUERIES IN
A WEB-BASED APPLICATION

Remedios de Dios Bulos, Jay-Vee Bonsol, Rhon Diaz, Adela A. Lazaro and Veronica E. D. Serra

De La Salle University

Abstract: This research investigates, provides empirical evidence and conducts a

comparative study among relational and non-relational databases involving simple queries in
a web-based application. Our testbed is a simple recipe recommendation system (MyRef)

which (ideally) uses left-over foods in the refrigerator. For comparative analysis, the system

is implemented using relational, XML and JSON database models. In the relational database
implementation, records or recipes are searched, selected and fetched through SQL queries

using MySQL. In the XML and JSON implementation, PHP programs are used to search,
select and fetch XML/JSON recipe documents. Two types of file storage strategies are used;

the first strategy involves storing each recipe in separate XML/JSON files; and the other
strategy uses only one XML/JSON file to store all the recipes. Experiments involving 10 sets

of test query cases are conducted. The database for each implementation consists of 1568
recipes. In recording observations for each test case, two timestamps are used. A timestamp is

recorded every time a query is submitted and every time the result of the query is returned.

The absolute difference between the two timestamps is used to measure the amount of time
(in seconds) it takes to execute each test case. Based on the results involving all test 10 cases,

SQL implementation retrieved the result set of recipes the fastest, followed by JSON and then
XML.

Key Words: relational databases; non-relational database; SQL; XML; JSON

1 INTRODUCTION
Relational databases have dominated the realm of database applications ever since

they were introduced through the pioneering research of Edgar F. Codd a little less than forty
years ago. However, of late non-relational databases (e.g. XML and JSON) have been gaining
ground in usage particularly among internet-based companies such as Facebook, Twitter,
Amazon, and Google; and the NoSQL technology has been adopted especially in applications
that require data exchange over the internet. The relational model is rigidly structured and it
has been around for almost 4 decades, and the systems that implement it have been around for
almost as long. XML and JSON are relatively new models and they follow a semi-structured
format. The main objective of this research is to undertake a comparative study among the
three models. Our approach to the study is two pronged: (1) evaluate the state of the art of the

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

2

three models by investigating relevant and up-to-date literature and (2) conduct an empirical

study by implementing the three models in a web-based application system (MyRef) and then
evaluate their query processing performance.

2 STATE OF THE ART: RELATIONAL MODEL vs XML vs JSON
In our survey of literature, we identified some of the main features that differentiate

the three data models – relational model, XML and JSON. In (Widom, 2013) these are
enumerated as: schema, queries, ordering and implementation. Table 1 summarizes the
comparison between the three models.

Table 1. Relational Model vs XML vs JSON [Widom, 2013]

 Relational XML JSON

 hierarchical tree,

Structure tables graph sets, nested arrays

 flexible flexible

Schema fixed in advance "self-describing" "self-describing"

 simple, easy, less simple, less simple, not
 expressive not widely used widely used (proposals
 languages (e.g. (e.g. XPATH, XQUERY, like JSON Path, JSON
Queries SQL) XSLT) Query, JAQL)

Ordering unordered implied arrays
 coupled with programming
Implementation native add-on languages, NoSQL systems

In terms of data structure, the relational model is basically a set of tables, with rows
and columns. XML has a hierarchical structure; it uses document or string format and it often
follows a tree structure (or sometimes a graph structure). JSON is based on sets of label pairs
and nested arrays. (Elmasri and Navathe, 2010; Garcia-Molina et al., 2007; Ramakrishna and
Gehrke, 2007; Silberschatz et al., 2010; Ullman and Widom, 2007; Widom, 2013)

With respect to schema, the relational model is quite rigid; it requires that a schema be
designed in advance before data is loaded; the data must conform to the schema. On the other
hand, XML has a self-describing schema; this allows more flexibility because the schema and
data can be combined together. Furthermore, XML allows elements of a schema (e.g.
enumeration of attributes) to be optional. However, in the relational model, all attributes are
uniform for all elements; and in case of missing values, null values are used instead. Because
XML has a flexible schema, the creation, addition, deletion and introduction of
inconsistencies in the structure do not pose any problem. JSON, just like in XML has a
flexible self-describing schema; however, it is easier to undersrtand than its XML
counterpart. (Elmasri and Navathe, 2010; Garcia-Molina et al., 2007; Ramakrishna and
Gehrke, 2007; Silberschatz et al., 2010; Ullman and Widom, 2007; Widom, 2013)

When it comes to querying the database, the relational model uses SQL, which is a
simple, easy, fairly efficient and an expressive high-level language. On the other hand,
querying in XML is still evolving and some of the query languages currently being used
include XPath, XQuery, and XSLT. For JSON, query languages are still being proposed at

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

3

this stage (e.g. JSON Path, JSON Query, and JAQL). Presently, JSON data is manipulated
programmatically. (Elmasri and Navathe, 2010; Garcia-Molina et al., 2007; Ramakrishna and
Gehrke, 2007; Silberschatz et al., 2010; Ullman and Widom, 2007; Widom, 2013)

With respect to ordering, the relational model is unordered while XML and JSON are
ordered. In the relational model, ordering of query results requires the inclusion of the
ORDER BY clause in SQL statement. In XML there is an implied ordering because the
document structure is hierarchical. JSON makes use of ordered arrays. XML and JSON data
are usually written in files, which are naturally ordered. (Elmasri and Navathe, 2010; Garcia-
Molina et al., 2007; Ramakrishna and Gehrke, 2007; Silberschatz et al., 2010; Ullman and
Widom, 2007; Widom, 2013)

Finally, in terms of implementation, relational database management systems which
have been around for almost 40 years implement the relational model natively; in addition,
they're widely used, very mature, efficient and powerful. Compared to the relational model,
XML hasn't been around for as long. In conventional database systems, XML is typically
utilized as an add-on feature. By and large, in most application systems, XML will be a layer
over the relational database system. This allows data entry and querying in XML as well as
combining XML and relational data in a single system. These are converted to relational
implementation but they are not the native model of the system itself. For JSON, there are
still no stand alone database systems that employ JSON as their data model; JSON is usually
coupled with programming languages. However, JSON is used in NoSQL systems: (1) as a
format for reading data into and writing data out from the systems; and (2) as "Document
Management Systems" where the documents themselves may contain JSON data and then the
systems will have special features for manipulating the JSON document (Elmasri and
Navathe, 2010; Garcia-Molina et al., 2007; Ramakrishna and Gehrke, 2007; Silberschatz et
al., 2010; Ullman and Widom, 2007; Widom, 2013)

Both XML and JSON are very good for writing semi-structured data into a file format
and are both popularly used for data interchange. In general, XML is more verbose. In terms
of complexity, a JSON document is quicker and easier to understand. With respect to
validity, that is, the ability to specify constraints or restriction or schema on the structure of
data and have it enforced by tools or by a system, XML has the notion of document type
descriptors (DTDs) and XML Schema Descriptors (XSDs). These are specified, checked and
at present are fairly widely used. On the other hand, JSON has JSON Schema which can also
be specified and then checked for conformity, albeit presently not widely used. With respect
to the programming interface, JSON is better than XML. In XML, there is an impedance
mismatch, that is, the XML model does not typically match the model of data inside a
programming language. Some manipulation at the interface between programming languages
and the database system still needs to be carried out. On the other hand, in JSON there is a

more direct mapping between many programming languages and its structures. (Elmasri and
Navathe, 2010; Garcia-Molina et al., 2007; Ramakrishna and Gehrke, 2007; Silberschatz et
al., 2010; Ullman and Widom, 2007; Widom, 2013)

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

4

3 MyRef: A WEB-BASED FOOD RECOMMENDER SYTEM
For our testbed, we developed and implemented the MyRef, a web-based application

system, which is a simple recipe recommendation system that matches the user’s chosen

ingredients. MyRef allows the user to select a set of currently available ingredients (ideally in
the refrigerator), and then should enable the user to prepare a meal by following the recipes

that are suggested by the system. It is implemented using relational, XML and JSON database
models. Our comparative study aims to determine which among the three models provides the

most efficient method of generating simple queries based on the performance of running

simple queries from the recipe databases of the three models. In carrying out our specific
objectives, MyRef was developed in five versions using five different database

implementations: (1) relational database (2) XML with only one document for all recipes (3)
XML with separate documents for each recipe (4) JSON with only one document for all

recipes and (5) JSON with separate documents for each recipe. In implementing the different
versions, PHP was used for the main program. In addition, HTML, Javascript and MySQL

were also used. In populating the recipe databases, a website crawler was dispatched and it
extracted data from various recipe websites. A total of 1568 recipes were collected. Using

specially designed programs, the extracted data was then cleaned, parsed and loaded in the

relational databases as well as created the respective JSON and XML recipe document files.

3.1 Database Structure
In relational model implementation of MyRef, the database schema consisted only of

one table (tblrecipes). The table structure as well as sample data is shown in Table 2. It is
implemented in MySQL, and uses SQL statements for queries. SQL is a high-level language
that allows writing codes in a fairly compact fashion and since it is declarative, it does not
need writing the algorithms to generate the queries. (Widom, 2013)

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

5

Table 2. Table tblrecipes (relational model)

Column Data Type Sample Data

recipeID INT 1000

recipeName TEXT Poppadums with lime & coriander dip
 Start your Indian meal in style with Meena Pathak's tangy dip - serve with plain
recipeDescription TEXT poppadums

recipeRating VARCHAR 6 ratings 5
 [id:201207290256380009.27][link:http://www.bbcgoodfood.com/images/recipes/easy_btn.gi
recipeDifficulty VARCHAR f][name:easy_btn.gif]

recipeServing VARCHAR 8 poppadums

recipePrepTIme VARCHAR

recipeCookTime VARCHAR Ready in 35-45 minutes, plus overnight marinating
 Put the mango chutney in a bowl and chop up any large pieces of mango. Mix with the
 spring onions, coriander and lime juice. Cover and chill until ready to serve. (You
 can make this up to a day ahead and keep it in a covered container in the fridge.)
 Serve the chilled dip in a bowl on a plate, with the poppadums broken in pieces and
recipeMethod TEXT placed around the sides.

 227 kcalories, protein 8g, carbohydrate 27g, fat 10 g, saturated fat 2g,
recipeNutrients TEXT fibre 3g, sugar 5g, salt 2.19 g

 4 tbsp mango chutney 1 bunch spring onions 4 tbsp fresh coriander 5 tbsp lime juice
recipeIngredients TEXT (about 3 limes) 8 ready-to-eat poppadoms

 [id:201207290256380009.28][link:http://www.bbcgoodfood.com/recipes/1691/images/1691_M
recipeImage VARCHAR EDIUM.jpg][name:1691_MEDIUM.jpg]

In the XML implementation of MyRef, the recipe document file (see Figure 2)
follows a semi-structured format. The document format is similar to HTML. It has three basic
components: tagged elements (which can be nested), attributes and text. The tagged element
has an opening tag (e.g. <recipeID>), text or other sub-elements and a closing tag (e.g.
</recipeID>). An attribute consists of an attribute name, the equal sign and then an attribute
value. The text is a string within the elements (e.g. 1000 for recipeID). The XML document
follows a tree structure where the strings or text form the leaves. An XML document is
considered well formed if it adheres to the basic structural requirements of XML, which are
single root element, matching tags with proper nesting and unique attribute names within
elements. (Widom, 2013)

<recipe>
<recipeID><![CDATA[1000]]></recipeID>
<recipeName><![CDATA[Poppadums with lime & coriander dip]]></recipeName>

<recipeDescription><![CDATA[Start your Indian meal in style with Meena Pathak's tangy dip - serve

with plain poppadums]]></recipeDescription>
<recipeRating><![CDATA[6 ratings 5]]></recipeRating>

<recipeDifficulty><![CDATA[[id:201207290256380009.27][link:http://www.bbcgoodfood.com/images/recipes/ea

sy_btn.gif][name:easy_btn.gif]]]></recipeDifficulty>
<recipeServing><![CDATA[8 poppadums]]></recipeServing>

<recipePrepTIme><![CDATA[Ready in 5 minutes]]></recipePrepTIme>

<recipeCookTime><![CDATA[]]></recipeCookTime>
<recipeMethod><![CDATA[Put the mango chutney in a bowl and chop up any large pieces of mango. Mix with

the spring onions, coriander and lime juice. Cover and chill until ready to serve. (You can make this

up to a day ahead and keep it in a covered container in the fridge.) Serve the chilled dip in a bowl on

a plate, with the poppadums broken in pieces and placed around the sides.]]></recipeMethod>

<recipeNutrients><![CDATA[227 kcalories, protein 8g, carbohydrate 27g, fat 10 g, saturated fat 2g,

fibre 3g, sugar 5g, salt 2.19 g]]></recipeNutrients>
<recipeIngredients><![CDATA[4 tbsp mango chutney 1 bunch spring onions 4 tbsp fresh coriander 5 tbsp

lime juice (about 3 limes) 8 ready-to-eat poppadoms]]></recipeIngredients>

<recipeImage><![CDATA[[id:201207290256380009.28][link:http://www.bbcgoodfood.com/recipes/1691/images/16

91_MEDIUM.jpg][name:1691_MEDIUM.jpg]]]></recipeImage>
</recipe>

Figure 2. A sample XML Recipe Document

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

6

In the JSON implementation of MyRef, JSON (JavaScript Object Notation) follows a
semi-structured format (see Figure 2). It is human readable and is not as rigid as the relational
model. The basic constructs in JSON are recursively defined. JSON has typical basic atomic
values such as numbers, strings, Boolean values, and no values. It has two types of composite
values: objects and arrays. Objects are enclosed in curly braces and they consist of sets of
label-value pairs (sometimes called “property”). Arrays, which are a list of values, are
enclosed in square brackets with commas between the array elements. Like XML, JSON has
some basic structural requirements; however, unlike XML, JSON format can be
heterogeneous (e.g. non-uniform of attributes). (Widom, 2013)

{"recipe":[{
"recipeID":"1000",
"recipeName":"Poppadums with lime & coriander dip",
"recipeDescription":"Start your Indian meal in style with Meena Pathak's tangy dip - serve with

plain poppadums",
"recipeRating":"6 ratings 5",
"recipeDifficulty":"[id:201207290256380009.27][link:http:\/\/www.bbcgoodfood.com\/images\/recipes\/easy_btn.gif]

[name:easy_btn.gif]",
"recipeServing":"8 poppadums","recipePrepTime":"Ready in 5 minutes",
"recipeCookTime":"",
"recipeMethod":"Put the mango chutney in a bowl and chop up any large pieces of mango. Mix with the spring

onions, coriander and lime juice. Cover and chill until ready to serve. (You can make this up to a day ahead

and keep it in a covered container in the fridge.) Serve the chilled dip in a bowl on a plate, with the

poppadums broken in pieces and placed around the sides.",
"recipeNutrients":"227 kcalories, protein 8g, carbohydrate 27g, fat 10 g, saturated fat 2g, fibre 3g, sugar

5g, salt 2.19 g",
"recipeIngredients":"4 tbsp mango chutney 1 bunch spring onions 4 tbsp fresh coriander 5 tbsp lime juice (about

3 limes) 8 ready-to-eat poppadoms",
"recipeImage":"[id:201207290256380009.28][link:http:\/\/www.bbcgoodfood.com\/recipes\/1691\/images\/1691_MEDIUM.

jpg][name:1691_MEDIUM.jpg]"}]}

Figure 3. A sample JSON Recipe Document

3.2 Implementation

For the SQL implementation, the database management system MySQL was used.
Upon submission by the user of some selected ingredients, the system develops the query
string to be passed on to the database connection by concatenating the POST variables (in this
case, the ingredients selected). A database connection is established by using the
mysql_connect() function in PHP. The constructed query string is then passed to the database
connection, which handles the MySQL connection to PHP; and then executes the query string
in the database by using the mysql_query() function in PHP. A result set is then generated,
which provides the information needed by the client. These are the recipes that include one or
several ingredients from the list. Parsing of the result set is being handled by PHP with the
use of the mysql_fetch_array() function in PHP, which returns an array of recipes. From this
array, the program then displays the information to users with the use of HTML codes.

For the XML, two different versions are implemented. The first version makes use of
only one (1) XML document file, which contains all the 1568 recipes. The second version
includes 1568 XML document files, one file for each recipe. For both the versions, the XML
file(s) were used as data source. Each file is opened (fopen) and scanned by a PHP function

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

7

for each of the POST variables (ingredients selected). Once the ingredient(s) are found, the
recipes are then added to an array which contains all the information needed by the user. The
information are then parsed and shown/returned to the user using HTML codes.

Quite similar with the XML implementation, the JSON implementation adopts two
approaches – single and multiple files. In order to decode the JSON files, the system opens
the file(s) and uses the json_decode() function to translate the JSON object into an array.
Similar to the XML implementation, the array that was provided by the decode function is
scanned and matched with the ingredients selected by the user. When a match(es) is found,
the relevant information is stored in another array; this is then parsed and shown/returned to
the user using HTML codes.

4 RESULTS AND DISCUSSION
Experiments involving 10 query cases were conducted to determine the

efficiency/performance of the five database implementations. Each test query was executed 5
times and the average execution time was calculated. In recording the observations for each
test case, two timestamps are used. A timestamp is recorded every time a query is submitted
and every time the result of the query is returned. The absolute difference between the two
timestamps is used to measure the amount of time (in seconds) it takes to execute each query.
Based on the results involving all test 10 query cases (see Table 3), the SQL implementation
retrieved the result set of recipes the fastest, followed by JSON and then by XML.

Table 3. Query Performance Results of 5 Database Implementations
 No. of SQL XML XML JSON JSON

Ingredients recipes (sec) multiple Merged multiple merged
 returned files file files file
 (sec) (sec) (sec) (sec)

Zest 174 0.1125 0.7873 0.7443 0.6207 0.1792

Zest, yogurt 11 0.0608 0.7736 0.7128 0.4598 0.1704

Zest, yogurt, sugar 5 0.0569 0.7942 0.7245 0.4389 0.1784

Zest, yogurt, sugar, 2 0.0532 0.7799 0.7189 0.3716 0.1823
egg

Zest, yogurt, sugar, 1 0.0826 0.7754 0.7181 0.4452 0.1843
egg, cheese

Zest, yogurt, sugar, 0 0.0539 0.7787 0.7452 0.4513 0.1884
egg, cheese, cocoa
powder

Broccoli 29 0.0483 0.7663 0.7105 0.4285 0.1684

Broccoli, chicken 4 0.0477 0.7684 0.7377 0.4395 0.1789
breasts

Broccoli, chicken 2 0.0491 0.7881 0.7121 0.4479 0.1770
breasts, olive oil

Broccoli, chicken 1 0.0485 0.7751 0.8155 0.4724 0.1800
breasts, olive oil,

almonds

Presented at the Research Congress 2013
De La Salle University Manila

March 7-9, 2013

LCCS-I-004

8

5 CONCLUSIONS AND FUTURE WORK
Efficiency is the overriding criteria we used to determine empirically which among

the relational model, XML, and JSON is better with respect to query processing. Our results
indicate that in terms of speed of querying, the relational implementation retrieved the fastest
result set. We surmised that the relational implementation performed better because we used
the MySQL environment to implent the system and run the queries; while for the XML and
JSON implementations, we retrieved the results programmatically using PHP. Also, all 10
test cases (queries) made use of only one table. For future work, we plan to use query
languages for XML and JSON, as well as adopt NoSQL systems (e.g. MongoDB). We also
plan to include more complex queries that utilize more than one table. We also plan to
implement other domains such as social networking.

6 REFERENCES
Elmasri, R. and Navathe, S., (2010). Fundamentals of Database Systems (6th edition),

Addison-Wesley
Garcia-Molina, H., Ullman, J.D., and Widom, J., (2007). Database Systems: The Complete

Book (2nd edition), Prentice Hall.
Ramakrishnan, T., and Gehrke, J., (2002). Database Management Systems (3rd edition),

McGraw-Hill Science/Engineering/Math.
Silberschatz, A., Korth, H. and Sudarshan, S., (2010). Database System Concepts (6th

edition), McGraw-Hill Science/Engineering/Math
Ullman, J. D. And Widom, J., (2007). A First Course in Database Systems (3rd edition),

Prentice Hall.
Widom, J. (2013). Introduction to Database. (An on-line course) Stanford University.

http://class2go.stanford.edu/db/Winter2013.

