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Abstract: Model-based control is now a significant technology for the control of robots. 

Models and control schemes are continuously refined to meet the requirements of higher 

performance and lower cost. The control strategies used in most robots involve position 

coordination in the Cartesian space through the inverse kinematics method. Inverse 

kinematics comprises the computations to determine the joint angles needed to achieve the 

position and orientation for the robot end-effector. The inverse kinematics problem is usually 

complex for robotic manipulators. There are three traditional methods used for solving 

inverse kinematics problems: geometric, algebraic and iterative. Computing for the inverse 

kinematics solution using these traditional methods is a time -consuming study, especially 

when the joint structure of the manipulator is more complex. The computation of inverse 

kinematics using artificial neural networks is particularly useful where less computation time 

is needed, such as in real time adaptive robot control. Traditional methods will become 

prohibitive due to the high complexity of the mathematical structure of the formulation, 

wherein robots have to work in the real world that cannot be modeled concisely using 

mathematical expressions. A neural network-based inverse kinematics solution methods 

yield multiple and precise solutions with an acceptable error and it is suitable for real-time 

adaptive control of robotic manipulators. This research focuses on the design and 

development a control system for a robot arm, using the Elman neural network based 

inverse kinematics solution approach. From the recurrent networks family, Elman Network is 

selected because of its feedback loops that have a weighty impact on the learning capability 

and performance of the network. This research integrates the mechanical and electronic 

systems design, with the model-based control algorithm, to establish an integral robot 

control system. Experiments were done using a 5 degree of freedom revolute Teachmover 

robot. Key points within the robot’s workspace were identified as testing points and both 

simulations and actual movements were done to verify results. These results show an 

average of 5.31% average distance error. 
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1.  INTRODUCTION 

 
Even though many academic researches have been made on the aspects of 

model-based robot control, a lot of applied research is still needed to assess the 

effectiveness of the algorithm in real robot applications. Applied research integrates the 
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mechanical and electronic systems design, with the developed model-based control 

algorithm, to establish an integral robot control system. It also incorporates the testing 

and simulation on an actual robot. Through applied research, it will allow the robot 

manufacturers to continuously improve robot performance in terms of accuracy, 

reliability, and productivity, and lower the cost of industrial robot automation. 

 

The study involves designing and developing a control system for a 5 DOF revolute 

robot arm, using a neural network based inverse kinematics solution approach. The Elman 

Network was chosen because of its feedback loops, which have a substantial impact on the 

learning capability and performance of a network. 
 

 

2.  THEORETICAL & CONCEPTUAL FRAMEWORK 

 
The notional structure for the study comprises of two key areas: Model-Based Robot 

Control, and the 5 DOF revolute robot arm features and specification. Model-based robot 

control includes the inverse kinematics solution methods, the neural network strategy and 

approaches to inverse kinematics, the Backpropagation algorithm, and the Elman neural 

network strategy. The features and specification for the 5 DOF robot arm includes the 

physical structure, the actuators, and the microcontroller used. The features and 

specification of the TeachMover robot arm was used for data collection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Conceptual Framework – Development of a Control System for a 5 DOF Robot Arm 
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Using Elman Neural Network Inverse Kinematics Solution Approach. 
 
 

3.  METHODOLOGY 

 

The structure of the feedback Elman network used in inverse kinematics 

problem solution is given in Fig.2. This network has three layers which are input, 

hidden and output (Elman, 1991, and Rodriguez et al., 1999). In the hidden layer and 

output layer nodes, the sigmoidal activation function, which is a nonlinear function, 

has been used as denoted in Fig.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Structure of the Elman network used in inverse kinematics problem 

solution (Adopted from Köker, R., 2005). 
 

The weights of the recurrent connections from hidden layer to context layer are 

fixed as ‘1’, namely, they do not have any effect as multiplier. The forward weights get 

trained using the back propagation algorithm. The context units act like input units in the 

forward phase. The computations of the output of hidden units and output units are done 

in the same way as is calculated for feed forward networks. After the computation of the 

outputs of the hidden units, these current values are given into the corresponding 

context units via the recurrent connections through a unit delay. These values are used 

in the next time step. At the first time step they have to be set to some initial values. 

During the backward phase of training, initial values for the outputs are used and the 

forward weights are adjusted by back propagation (Cheng et al., 2002). 
 

The expressions for the outputs of each hidden layer neurons are given in the formula  
below: 
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Elman network output can be given as: 
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(Eq. 2) 
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where Ii(k) is the ith input to the network (external inputs), Xi(k-1) is recurrent input to 

the network, W
ih

1,0 is the weight value from the first neuron of input layer to the first 

neuron of hidden layer, Xi(k) is the ith recurrent input, W
ho

1,0 is the weight value 

from the first neuron of input layer to the first neuron of hidden layer, OUTk(n) is the 
nth output (Temurtas et al., 2004). 
 

Three feed forward Elman neural networks with sigmoid activation function 

are used to solve inverse kinematics problem based on reliability. The block diagram 

of inverse kinematics solution with unique Elman network is given in Fig.2-7. Each 

network has been obtained with the possibly least error. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Neural network-based inverse kinematics solution with unique Elman network 

(Adopted from Köker, R., 2005). 
 

Firstly, three different sets ofθ1,θ2,θ3,4,θθ5,000θ6) data, which consist of the ( 
joint angles according to the different (X, Y, Z, ox, oy, oz, nx, ny, nz, ax, ay, az) cartesian 

coordinate parameters, were generated separately using in the work volume of a robotic 

manipulator. Attempts have been made to obtain well structured learning sets to make the 

learning process successful and easy. These values were recorded in files to form the learning 

sets of the networks. Each 3000 of these data was used in the training of Elman networks, and 

the remaining 1000 were used in the testing of each network one by one. During the training, the 

unlearned data of the first two networks have been selected and included in the training set of 

the third network. The training process is not completed until the error is acceptable for each 

network. To understand whether the error is acceptable or not, information about distance that 

refers to difference between the end effector and the target point is used. This distance, also 
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known as an error, can be obtained easily in metric form by using three-dimensional (3-D) 

distance equation between two points in 3-D space. Euclidian distance equation given below can 

be used in the distance computation. As a result, it can be decided whether the error is 

acceptable or not depending on the obtained distance. Here, the sensitivity of the application is 

also important in the decision of an acceptable error.Figures and tables should be referred to in 

the text. They should be centered as shown below and must be of good resolution. Where 

equations are used, adequate definition of variables and parameters must be given, as shown in 

the example below. 
 

E = [(X2 - X1)
2
 + (Y2 - Y1)

2
 + (Z2 - Z1)

2
]
1/2

 (Eq. 3) 

 
All of the obtained results from Elman networks are tested using Euclidian distance 

equation given above. As stated above, this is an important point for the selection of the best 

result of neural networks. Using direct kinematics equations, each Elman network’s results 

can be tested to select the network with minimum distance ‘d’ from target. 
 
 

4.  RESULTS AND DISCUSSION 

 

To simulate the effectiveness of the control system developed for the 

TeachMover robot arm, including the weights generated from the previous program, 

40 points from its workspace are tested for position accuracy in both graphical and 

actual simulations. The actual position values are manually measured from the tip of 

the gripper of the TeachMover (when closed) referenced to a scaled grid line. 
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Table 1. TeachMover Graphical and Actual Simulation Results. 
 

  
Target Values  Graphical Simulation  Actual Simulation  

 

Sample    Values  % Error Values (Measured) % Error  

      
 

 X Y  Z X Y Z  X Y Z  
 

1 -4 14.5  12 -3.75 14.46 11.98 0.31 -4.25 14.25 12.38 33.67 
 

2 -4 14.5  10 -3.95 14.36 9.78 2.78 -4.50 14.38 9.88 13.47 
 

3 -4 14.5  8 -3.98 14.32 8.01 0.08 -4.50 14.25 7.88 33.67 
 

4 -4 14.5  6 -3.84 14.34 5.97 2.34 -4.13 14.25 5.88 11.22 
 

5 -2 14.5  12 -1.93 14.81 12.00 0.00 -2.25 14.38 12.38 33.67 
 

6 -2 14.5  10 -2.05 14.75 9.77 9.73 -2.50 14.50 10.13 0.00 
 

7 -2 14.5  8 -2.05 14.72 8.01 0.46 -2.50 14.63 8.00 0.00 
 

8 -2 14.5  6 -1.97 14.71 5.96 1.46 -2.25 14.63 6.00 0.00 
 

9 0 14.5  12 0.02 14.94 12.01 -- -0.13 14.75 12.63 -- 
 

10 0 14.5  10 0.01 14.89 9.76 -- -0.25 14.75 10.00 -- 
 

11 0 14.5  8 0.00 14.86 7.99 -- 0.00 14.75 7.88 -- 
 

12 0 14.5  6 -0.02 14.83 5.94 -- 0.00 14.75 5.50 -- 
 

13 2 14.5  12 2.04 14.80 12.00 0.00 2.13 14.63 12.50 22.45 
 

14 2 14.5  10 2.07 14.75 9.75 14.70 2.38 14.63 10.00 0.00 
 

15 2 14.5  8 2.04 14.72 7.99 0.37 2.38 14.75 8.00 0.00 
 

16 2 14.5  6 1.90 14.71 5.94 7.59 2.13 14.63 5.75 22.45 
 

17 4 14.5  12 4.01 14.39 11.99 0.02 4.25 14.50 12.63 0.00 
 

18 4 14.5  10 4.06 14.33 9.74 4.68 4.25 14.63 10.13 6.73 
 

19 4 14.5  8 3.97 14.32 7.99 0.12 4.50 14.50 8.00 0.00 
 

20 4 14.5  6 3.71 14.37 5.95 5.94 4.38 14.50 5.75 0.00 
 

21 -4 15  12 -3.7 14.48 11.99 2.43 -4.25 14.50 12.13 21.70 
 

22 -4 15  10 -3.92 14.37 9.78 20.13 -4.13 14.50 9.88 13.02 
 

23 -4 15  8 -3.96 14.33 8.02 1.18 -4.13 14.38 8.13 20.35 
 

24 -4 15  6 -3.83 14.35 5.96 13.49 -3.88 14.50 5.88 21.70 
 

25 -2 15  12 -1.9 14.82 12.01 0.53 -2.13 14.88 12.25 10.85 
 

26 -2 15  10 -2.03 14.76 9.77 5.66 -2.13 14.88 9.88 6.51 
 

27 -2 15  8 -2.03 14.73 8.01 0.34 -2.13 14.88 8.13 8.14 
 

28 -2 15  6 -1.95 14.71 5.95 4.25 -2.13 14.75 5.88 21.70 
 

29 0 15  12 0.05 14.94 12.02 -- -0.25 14.88 12.25 -- 
 

30 0 15  10 0.01 14.89 9.76 -- -0.13 14.88 9.75 -- 
 

31 0 15  8 0.02 14.86 8 -- 0.00 14.88 7.88 -- 
 

32 0 15  6 0.02 14.84 5.93 -- -0.13 14.88 14.88 -- 
 

33 2 15  12 2.06 14.8 12.02 0.65 2.25 15.00 12.25 0.00 
 

34 2 15  10 2.08 14.75 9.75 16.72 2.13 14.63 9.88 20.31 
 

35 2 15  8 2.07 14.72 7.99 0.81 2.13 14.88 7.75 16.93 
 

36 2 15  6 1.96 14.71 5.93 4.75 2.13 14.75 5.88 22.57 
 

37 4 15  12 4.03 14.39 12.01 0.26 4.13 14.50 12.25 21.70 
 

38 4 15  10 4.07 14.33 9.74 21.47 4.13 14.50 9.75 26.04 
 

39 4 15  8 4.01 14.31 7.99 0.15 3.88 14.38 7.88 20.35 
 

40 4 15  6 3.78 14.35 5.94 26.63 3.88 14.50 5.88 21.70 
 

 

 

Results have shown that the average % distance error for the graphical 

simulation is approx 5.31%, while for the actual simulation is approx 14 %. Main 

contributors for the increase in % error for the actual simulation are the inaccuracies 

in the step / degree specification of the robot mechanical gear ratios, and the 

parallax error when doing the position measurements manually. 
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5.  CONCLUSIONS 

 
Results have shown that the average % distance error for the graphical simulation is 

approx 5.31%, while for the actual simulation is approx 14 %. Main contributors for the 

increase in % error for the actual simulation are the inaccuracies in the step / degree 

specification of the robot mechanical gear ratios, and the parallax error when doing 

the position measurements manually. 
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