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One of the essential concerns of investors of all time is to choose the best investment opportunities to capitalize on the value 
of their investment in stocks. Its objective is to minimize risk and at the same time also maximize return. This refers to 
portfolio optimization as the procedure of choosing the weights of a number of stocks to be included in a portfolio so that 
the optimum objective is achieved. Several studies have been shown by economists, mathematicians, and practitioners that 
provided sufficient and critical information for conducting stock portfolios. Approaches, methodologies, and techniques in 
those researches have to be reviewed for purposes of synthesis of published research in this area, insight into how to carry 
similar studies, and criticize gaps to be filled in the future research. In this report, we adopted a thematic review of stock 
portfolio optimization theories and applications, including some current issues on Shariah stock portfolio. A comprehensive 
overview of theories and approaches for stock portfolio selection, both fundamental and technical, is presented. The report 
will end with an overview of the mathematical model (exact and heuristic) for solving stock portfolio optimization problems. 
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Stock portfolio management provides important 
information for government policy, authorities, or 
investors to make an investment decision. There are 
different approaches and methodologies for performing 
such analysis. Recently, the optimization had prompted 
research interest in developing the optimal financial 
decision. Therefore, it is necessary to provide an 
overview of the development in these studies.

This review highlights some contemporary issues on 
stock investment and its characteristics in connection 
with market fluctuation. The review also looked into 
the current trend on Shariah stock investment, which 
are claimed to experience a rapid evolution and 
expansion of the Islamic financial services industry. It 
has also received a wider acceptance and appreciation 
beyond the conventional one. 
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We also adopted a thematic review of methodologies 
and techniques used by several authors in forming a set 
of stock portfolios based on fundamental and technical 
analysis. The review considered the pros and cons of 
two techniques from recent papers published in the 
subject areas. The review style included analyzing the 
underlying economic theory, mathematical theory and 
methods, and its application. 

Furthermore, this study attempts to review the 
methodologies for solving stock portfolio optimization 
problems. Two approaches that are frequently used are 
heuristic and exact optimization models. A review of 
these two approaches provides insight and guide in the 
direction of future research interest. This review aims 
at summarizing work on stock portfolio optimization. 
Application of better techniques on forming a set of 
stock portfolios and constructing the optimization 
model are underway; therefore, this review only 
provides a threshold in the understanding of stock 
portfolio, stock portfolio selection, and stock portfolio 
optimization.  

Stock Investment  
A share of stock, a type of financial investment 

and literally referred to as “stock,” is a share in the 
ownership of a corporation (Pentheny, 2009). Stocks 
can be bought and sold at a price determined by the 
financial success of the securities and the overall 
demand for the stock securities. It is one of the most 
versatile sectors in the financial system and plays 
an important role in economic development (Yadav, 
2017). An aggregation place of buyers and sellers 

where stocks, bonds, or other securities are bought 
and sold is known as the stock market. 

The concept of a share market was first introduced 
in France in the 13th century. The Dutch East India 
Company was the earliest company to issue shares 
on the Amsterdam Stock Exchange in 1602 (Osmani 
& Abdullah, 2009). According to Siegel and Coxe 
(2002), a century later, the first actively traded U.S. 
stocks, floated in 1791, were issued by two banks: the 
Bank of New York and the Bank of the United States. 
Both offerings were enormously successful and were 
quickly bid to a premium. However, they collapsed 
the following year when William Duer attempted 
to manipulate the market and precipitated a crash. 
However, stock prices in the 1990s were dramatically 
increased and influence stock markets across countries 
(Duong & Siliverstovs, 2006). These situations 
indicated that the stock market is commonly fluctuated 
due to particular economic reasons.

Investment in stocks can be risky, particularly due 
to stock price fluctuation. Fluctuation is said to occur if 
there are a lot of shares for sale and no one is interested 
in buying them, and the price will quickly fall (Vincent 
& Bamiro, 2013). Fluctuations of stock prices and 
stock indices result in a problem of uncertainty, which 
is common to all stock markets. As presented in Table 
1, there are several causes influencing the stock price 
in the world as described by Yadav (2017), Kearney 
and Daly (1998), Pentheny (2009), Vincent and Bamiro 
(2013), and Siegel and Coxe (2002). Consequently, 
many researchers suggested the importance of stock 
portfolio risk management (Andersen, 2008; Ridha & 
Alnaji, 2013).

Table 1.  Summary of Analysis on Stock Price Fluctuation in the World

Country Causes Reference

India
Inflation rate, interest rate,  financial leverage, corporate 
earnings,  dividends  yield  policies,  bonds  prices, and 
social and political variables

Yadav, 2017

Australia Inflation rate, interest rates, and money supply Kearney & Daly, 1998
United 
Kingdom

Financial  success  of  the company, the investor’s demand, 
and the confidence of investors Pentheny, 2009

Nigeria
Monetary policy,  a shift in mortgage lending toward the less 
creditworthy and marginal  borrowers, and high operating 
costs in Nigeria

Vincent & Bamiro, 
2013

United States World conflict, gold price, monetary policies, and business 
cycle Siegel & Coxe, 2002
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Shariah Stock Investment
Recently, the trend of investments based on ethical, 

social, and environmental standards has expanded 
substantially (Karim et al., 2014). Louche et al. (2012) 
outlined responsible investment as a process through 
which investors try to influence companies’ behavior 
on a range of moral issues. Albaity and Rubi (2008)
concluded that investment in Shariah stocks is referred 
to the Islamic principles of transactions (Muamalat), 
and therefore, in their view, Islamic investments also 
fall into the type of ethical investment. 

Global Shariah stock indices, represented by 
12 major active (as seen in Table 2), have gained 
popularity due to the greater potential of growth and 
profitability (Ho et al., 2014). Moreover, Hussain et 
al. (2015) conveyed in their IMF working paper that 
during 2009-2013 the assets growth of Shariah stock 
markets—both Gulf Cooperation Council (GCC) 
countries and others—grew, on average, by 17.5% 
or almost twice as the attainment of the conventional 
stock market (see Figure 1). Countries (both GCC and 
others) measured include Bahrain, Egypt, Indonesia, 
Kuwait, Malaysia, Pakistan, Qatar, Saudi Arabia, 
Turkey, and United Arab Emirates.

Table 2.  Global Shariah Stock Market From the U.S., European Countries, and Asian Countries

Index Country of origin Number of 
constituents

Year of 
origin

Dow Jones Islamic Market Index (DJIMI) United States 2,374 1999
Standard & Poor Shari’ah Index (S&PSI) United States 512 2007
Russell-Jadwa Shari’ah Global Index (RJSGI) United States 2,700 2007
FTSE Islamic Index (FTSEII) United Kingdom 2,700 2009
Royal Bank of Scotland Shari’ah Index (RBSII) United Kingdom - 2004
DMI 150 Islamic Index (DMII) Switzerland 150 2008
Societe Generale Wise Shari’ah Index (SGWSI) France 600 1999
Bombay Stocks Exchange Shari’ah 50 Index (BSESI) India 50 2008
Jakarta Islamic Index (JII) Indonesia 30 2003
Kuala Lumpur Shari’ah Index (KLSI) Malaysia 30 2000
Hong Kong Islamic Index (HKII) Hong Kong 16 2007

Source: Ho (2014)

   Source: (Hussain et al., 2015)
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Some scholars have also shown that the performance 
of the Shariah stock market tends to be better in terms 
of return, for example, the Malaysia Dow Jones Islamic 
Index (DJIM) and FSTE Bursa Malaysia Index (KLCI; 
Karim et al., 2014; Reddy & Fu, 2014) and stable 
against crisis  (Abu Bakar & Ali, 2014;  Reddy & Fu, 
2014) compared the conventional one, for example, 
Australian Stock  Exchange (ASX). 

Furthermore, many researchers also made a 
comparison between the Shariah stock market and 
the conventional stock market (Alam et al., 2017; 
Geumei, 2018; Hussain et al., 2015; Osmani & 
Abdullah, 2009). Table 3 exhibits their comparison 
based on different views. However, in Reddy & Fu  
(2014), later researchers have reported evidence of 
a correlation between conventional market indices 
between  North  American,  European  Union,  Far  
East,  and  Pacific markets compared to the Islamic 
index returns (Dania & Malhotra, 2013). They 
argued that the price of Islamic and conventional 
securities corresponds to macroeconomic elements. 

Consequently, both are almost the same except for 
certain terms in trades mechanism and halal products 
(Alam et al., 2017; Samra & Joseph, 2018).

As one of the rich countries in both renewable 
(agricultural products) and non-renewable sources 
(mining and minerals), Indonesia, even though still 
behind Malaysia when based on Islamic finance 
fundamentals (Yusof & Majid, 2009), has the 
opportunity to develop the Shariah investment. 
This prediction is based on the country’s narrow 
fiscal deficits, low public indebtedness, healthy 
economic growth prospects, the large scope of the 
Indonesian economy, and the potential of the largest 
Muslim population in the world. Lusyana and Sherif 
(2017) added that the performance of the Indonesia 
Shariah-compliant Stock Index (ISSI) and Jakarta 
Islamic Index (JII) was promising by reason of the 
increasing number of investors whose concern in the 
ethical investment. Hence the Shariah investment 
atmosphere in Indonesia might be interesting to 
observe further.

Table 3. Comparison of Shariah and Conventional Stock Market based on Some Views

Basis of comparison Shariah Conventional
Existences It exists for Islamic corporations to raise capital

in a Halal way following the laws of the Shariah
It exists mainly to channel the wealth 
of savers to those who can put it to 
long-term productive use (to raise 
capital)

Products Sukuk, stocks, sharia-compliant equities,
Islamic funds, equity funds Islamic exchange-
traded funds (IETFs), Islamic real estate investment 
trusts (IREITs)

Equities, derivatives (swaps, options, 
futures, forward), and bonds

Places Traded in the same places as the conventional ones 
since no Islamic only exchanges exist

Available in approximately all the 
countries

Activities Only allowed to offer investment instruments for 
projects that are useful and add value to the society

Offer investment instruments for 
any profitable project whether it is 
beneficent to the society or not; the 
only important factor is how profitable 
and how risky is it

Rules Shariah principles: (1) free from all forms of Riba,  
Al-Maysir,  Al-Gharar,  price  controlling,  Al-
Ihtikar, misinformation,  and coercion, (2) halal 
product (3) no pornography

It is not bound by any restrictions

Contract Mudharabah Interest
Risk and Return Market risk sharing is essential.

So the return should be associated with the risk
Risk is better to be avoided.
Most derivatives are speculative and 
developed to hedge against the risk
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Stock Portfolio Selection

A portfolio as a set of stocks needs to be selected 
appropriately to obtain the expected result. As the 
stock markets fluctuate dramatically, shares analysis 
is one of the leading issues for investors to consider 
the market trend and reduce gambling facets of stocks 
investment (Hooke, 2010). Basically, there are two 
known leading investment decisions tools that are 
usually employed by investors in portfolio selection, 
that is, fundamental analysis and technical analysis. 
Both of them can be used to determine the value of a 
stock and forecast its future performance (Cohen et al., 
2011; Wafi et al., 2015). 

Many researchers compared the credibility between 
technical and fundamental analysis. According to 
Moosa and Li (2011), Neely et al. (2010), and Wafi et 
al. (2015), technical analysis outperforms fundamental 
analysis. However, it contrasts with the study of Jakpar 
et al. (2019) that fundamental analysis is able to forecast 
and generate a positive return better than technical 
analysis in the food manufacturing in Bursa Malaysia. 
In addition, Silva et al. (2014) included a fundamental 
analysis using financial ratios instead of technical 
before dealing with the optimization algorithms. They 
claimed that financial ratios, which are quantitative 
measures, can intensely analyze the performance of a 
company in terms of profitability, liquidity, debt, and 
growth. Return on equity (ROE), one of the financial 

ratios, has shown to be firm in discriminating the 
performance of institutional investors (Mustilli et al., 
2018). Overall, there is no such judgment of the two 
investment tools (fundamental or technical) that better 
select stock portfolios.

Fundamental Analysis
Fundamental analysis is defined as a  method of 

evaluating a security by attempting to measure its 
intrinsic value. It deals with real data reports issued 
by corporate financial as evaluation by examining 
related economic, financial, and other qualitative 
and quantitative factors (Drakopoulou, 2016; Suresh, 
2013; Thomsett, 2005). More precisely, it attempts to 
study everything that can affect the security’s value, 
including macroeconomic factors  (like the overall 
economy and industry conditions) and specific factors 
(such as the financial condition and management 
of companies). Campanella et al. (2015) added that 
fundamental analysis could predict the abnormal 
returns to be triggered by dividend announcements 
in the European securities market. Fundamental 
analysts also proclaim that financial results are the 
only dependable means for establishing the value of 
a company. Nevertheless, Suresh (2013) argued that 
one should capture not only the financial performance 
of the company but also the economic situation and 
industrial environment. He labeled such examination 
steps as EIC (economy, industry, company) framework. 

Table 4.  Sequence of Fundamental Analysis

Steps Activities Formula/Indicators Reference
1st: Economic analysis Understanding macroeconomic 

environment and development 
(situation of a nation)

Inflation rate, interest rate, 
monetary policy, etc.

Sathyanarayana & 
Gargesa, 2018; Suresh, 
2013

2nd: Industry analysis Analyzing the prospects of the 
industry to which the company 
belong (industry grouping)

Industry life cycle, competitive 
analysis of the industry, etc.

Sabol et al., 2013; 
Suresh, 2013

3rd: Company analysis Assessing the financial 
performance of a company

Debt, earning sale, earning per 
share, equity, etc.

Jakpar et al., 2019; Silva 
et al., 2014 

4th: Ratio analysis Predicting the future 
projections of earning 
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Moreover, Mohammed et al. (2020) enriched 
an extra step so-called ratio analysis. There are 
many ratios that can be used, but they are all 
categorized into one of three groups: liquidity 
ratios (determine how quickly the company will 
fulfill its obligations at maturity without incurring 
a loss), profitability ratios (measure and evaluate 
the ability of a company to generate income (profit) 
relative to revenue), and leverage ratios (indicate 
the utilization of borrowed money or level of debt). 
Table 4 illustrates the sequence of fundamental 
analysis along with supporting information desired. 

Although there are different and varying concepts 
related to the fundamental analysis, the economists 
agree on the same objective, that is, to forecast future 
earnings and the true value of the assets so that 
investors can make investment decisions at the right 
time to gain profit. In addition, from all formulas of 
ratio analysis displayed in Table 4, the price/earnings 
ratio (P/E) is perhaps the most primary measurement of 
a stock’s value. As a fundamental indicator, according 
to Ghaeli (2017), it is normally implemented as a 
metric to compare individual stocks and the market as a 
whole relative to historical valuations. Accordingly, the 
portfolio selection might be executed by considering 
the properties on fundamental analysis as base choices, 
but it seems that it needs to be verified by other 
analyses.

Technical Analysis
Unlike fundamental analysis that focuses on 

intrinsic value, technical analysis deals with the 
behavior of the market, which only focuses on the 
price action, such as the historical price of a certain 
period. The aim of technical analysis is to help 
investors select the proper portfolio and the best time 
to buy and sell the stock by spotting demand and 
supply levels plotted on a chart (see Eiamkanitchat et 
al., 2017; Jakpar et al., 2019). The term “best” refers 
to the most appropriate period to either perform (buy 
or sell) or not perform (hold) the trading by employing 
one of some common useful methods in technical 
analysis such as exponential moving average (EMA), 
simple moving average (SMA), relative strength index 
(RSI), the stochastic oscillator (STO), the moving 
average convergence divergence (MACD), and the 
average directional index (ADX). Eiamkanitchat 
et al. (2017) recommended EMA; the trend of the 
prices indicates by the exponent values those plotted 

on the price chart, as a suitable method in resulting 
the best average earning compared to MACD, STO, 
and RSI. In addition, de Souza et al.  (2018) revealed 
that stock markets in BRICS member nations that are 
technically analyzed based on SMA, EMA, and its 
combination are profitable in terms of return, whereas 
Jakpar et al. (2019) preferred to employ MACD to 
test its correlation with stock returns.       

The portfolio selection, firstly introduced by 
Markowitz (1952), is well-known as the main problem 
in the finance literature and investment practice; 
because the future returns of shares are not known at 
the day of the investment decision, the problem is one 
of decision-making under risk measure (Geambasu et 
al., 2013; Kulali, 2016). The most important aspect of 
Markowitz’s model was his description of the impact 
on portfolio diversification by the number of securities 
within a portfolio and their covariance relationships 
(Mangram, 2013). Substantially, it was argued that an 
infinite number of “efficient” portfolios exist along a 
curve defined by three variables: standard deviation, 
correlation coefficient, and return. The efficient-frontier 
curve consists of portfolios with the maximum return 
for a given level of risk or the minimum risk for a given 
level of return (Todoni, 2015).

Such remarkable invention is based on modern 
portfolio theory (MPT), which focuses on risk 
measures by employing variance or standard deviation. 
Unfortunately, a considered risk has been a debatable 
topic. Many scholars such as Rockafellar and Uryasev 
(2016), Rom and Ferguson (2009), Roman and Mitra 
(2009), and Mangram (2013) suggested new risk 
measures even though nowadays MPT remains the 
most commonly used measure in portfolio selection 
practices. Furthermore, with the intention of risk-
adjusted return on MPT, Sharpe (1994) then proposed 
the Sharpe ratio (Kolbadi & Ahmadinia, 2011; Pilotte 
& Sterbenz, 2006). It is the ratio of the excess return 
to the standard deviation of that return. Additionally, 
Jack Treynor (1965) provided an alternative reward-
to-risk ratio, that is, the Treynor ratio. It is the ratio of 
the excess return to the systematic risk of that return 
and reliant upon a portfolio’s beta (market who decides 
risk; Pilotte & Sterbenz, 2006).

Another theory to fill the gap of MPT, particularly 
on the market reality, is termed post modern portfolio 
theory (PMPT). Geambasu et al. (2013) claimed 
that it includes the behavior of the investor in the 
computation of risk measure, considering the risk 
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Table 5. Differences Between MPT and PMPT Based on Some Perspectives

Perspectives MPT PMPT Reference
Risk measure Standard deviation Downside risk Roman & Mitra, 2009; 

Todoni, 2015
Risk-adjusted return Sharpe ratio (SR) 
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=  

Sortino ratio (SoR) 

SoR p f

d

r r
σ
−

=  

Geambasu et al., 

2013; Kolbadi & 

Ahmadinia, 2011; 

Pilotte & Sterbenz, 

2006; Todoni, 2015 

Return 

distribution 

Symmetrical 

(penalizing upside and 

downside part) 

Asymmetrical 

(penalizing downside 

part only) 

Mangram, 2013; 

Rom & Ferguson, 

2009; Roman & 

Mitra, 2009 

Benchmark rate Risk-free rate, driven 

by government 

Minimum acceptance 

rate (MAR), driven by 

market 

Rasiah, 2012; 

Todoni, 2015 

Assumption 

used 

Not considering 

investor expectation 

Considering investor 

expectation 

Geambasu et al., 

2013; Mangram, 

2013 

Tested by 

bootstrapping 

simulation 

Resulting in a lower 

return 

Resulting in a higher 

return 

Cheng, 2001 

           Notes: portfolio return, risk free rate, standard deviation, portfolio beta, downside riskp f p p dr r σ β σ= = = = =  
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as to the chance that the investment return is less 
than the minimum return expected by the investor 
from his portfolio. Compared with MPT, Lee and 
Eid (2018), Rom and Ferguson (2009), and Roman 
and Mitra (2009) argued downside risk metrics 
of PMPT as the essential difference in favor of 
more appropriate risk measures for asymmetric 
distributions of returns. Moreover, to calculate 
risk-adjusted return based on downside risk, Sortino 
proposed a modified version of Sharpe ratio, named 
Sortino ratio (Rasiah, 2012). It includes minimum 
acceptance rate (MAR) and downside risk as 
variables to be considered (Rom & Ferguson, 2009). 
Table 5 reviews in more detail the differences of 
methods between MPT and PMPT. 

The next popular risk measure of portfolio 
performance is value at risk (VaR). It considers 
the confidence level of maximum losses. Although 
VaR is one of the most accepted measures of 
risk, according to AlHalaseh et al. (2016), it has 
undesirable mathematical characteristics such as a 
lack of sub additively, convexity, and coherent only 
when it is based on the standard deviation of normal 
distributions. To overcome this lack, the other risk 
measure introduced by Rockafellar and Uryasev 
(2016), i.e., Conditional Value at Risk (cVaR) was 
performed. It is the average of some percentage of 
the worst-case loss scenarios and approximately 
equal, at the same confidence level, to the average 
of losses greater than or equal to VaR  (Roman & 
Mitra, 2009; Sarykalin et al., 2008). Furthermore, 
Rockafellar and Uryasev (2016), Sarykalin et al. 
(2008), and AlHalaseh et al. (2016) showed that CVaR 
is superior to VaR in optimization applications. Table 
6 summarized the method’s characteristics between 
VaR and cVaR.

Portfolio Optimization

There are always two sides to an investment, 
namely risk and return. As a general rule in the 
economy, one who seeks more return must expect more 
risk, and conversely, one who hunts for less risk will 
gain less return. The objective of such a problem is to 
minimize risk and, at the same time to maximize return. 
This refers to portfolio optimization as the procedure 
of choosing the weights of a number of stocks to be 
included in a portfolio so that the optimum objective 
for certain condition is obtained. The condition would 

be combined directly or indirectly in considerations 
of the expected value of the portfolio’s rate of return 
as well as the return’s dispersion and possibly other 
measures of financial risk. 

Portfolio optimization is the technique of finding the 
best portfolio for the investors, given the available set 
of portfolios and the investor’s tolerance for risk. It is 
often called mean-variance optimization (MVO). The 
term refers to the expected return of the investment, 
and variance is the measure of the risk associated 
with the portfolio. The mean-variance concept is 
constructed initially by Markowitz (1952). It deals 
with a point of view of portfolio investment decision 
that allows investors to plan, predict, monitor, and 
decide on the desired risk and return. The fundamental 
goal of MVO is to optimally allocate investments 
between different assets. Kulali (2016) asserted that 
investors who are risk-averse and efficient portfolios 
must meet two conditions, namely minimizing the 
variance of portfolio for a given expected return or 
maximizing the expected return for a given variance. 
The first condition results in the problem of finding 
a minimum variance portfolio of the stocks  that 
yields at least a target value of the expected return. 
Mathematically, the model of MVO is derived from 
the convex quadratic programming (Fu, 2019; Mussafi, 
2012). The basic idea here is to consider an investor 
with a fund to invest in n different stocks. Let ri be the 
random variable associated with the rate of return for 
stocks i for i = 1,...,n, and define the random vector 
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is derived from the convex quadratic programming (Fu, 2019; Mussafi, 2012). The basic idea here 

is to consider an investor with a fund to invest in n  different stocks. Let ir  be the random variable 

associated with the rate of return for stocks , for 1,..., ,i i n=  and define the random vector 

( )1 2, ,..., .T
nz r r r=  Set 1 2( ), ( , ,..., ) , and cov( ) .T

i i nE r m zµ µ µ µ= = = ∑  If 1 2( , ,..., )T
nw w w w= is a set of 

weights in a portfolio. The rate of return of this portfolio 
1

n

i i
i

r r w
=

=∑ is also a random variable with 

mean Tm w and variance .Tw w∑  If bµ is the targeted value of expected return, then an optimal 

portfolio is a portfolio that solves the following quadratic programming (QP). 

1min
2

. . , 1, and 0,

T

x

T T
b

w w

s t m w e w wµ

∑

≥ = ≥
        (1) 

where e denotes the vector of ones.  

Having a portfolio constructed properly either by fundamental or technical analysis, one 

can see the emphasis on how to solve portfolio optimization, that is, how to allocate the assets 

optimally. In recent years, mathematical programming techniques have become vital tools to 

support assets allocation, making process and being gradually applied in financial decision. It is 

one of  the  Operations  Research  techniques  which  seek  to maximize or minimize a function of 

many variables subject to a set of constraints enforced by the nature of the problem being studied  

and  integrally  restrictions  on  some  or  all  of  the variables. In contrast to other mathematical 

tools such as statistical models, forecasting, and simulation, mathematical programming models 

allow the decision maker to find the optimal solution (Mokhtar et al., 2014).  

Furthermore, the research community has focuses on the identification of efficient and 

effective solution approaches for solving the mathematical programming model of portfolio 
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vital tools to support assets allocation, making process 
and being gradually applied in financial decision. It is 
one of  the  Operations  Research  techniques  which  
seek  to maximize or minimize a function of many 
variables subject to a set of constraints enforced by 
the nature of the problem being studied  and  integrally  
restrictions  on  some  or  all  of  the variables. In 
contrast to other mathematical tools such as statistical 
models, forecasting, and simulation, mathematical 
programming models allow the decision maker to find 
the optimal solution (Mokhtar et al., 2014). 

Furthermore, the research community has focuses 
on the identification of efficient and effective solution 
approaches for solving the mathematical programming 
model of portfolio optimization problems. Ordinarily, 
the methods can be categorized into two main types: 
exact approach and heuristics approach.

Exact Approaches
Numerous exact approaches have been suggested 

to solve portfolio optimization either for single 
objective or multi-objective. Mixed integer quadratic 
programming (MIQP) and QP are most widely used 
to represent real-world problems in a deterministic 
manner. Nevertheless, another deterministic method 
of linear programming (LP) is employed but still goes 
through the transformation process from QP based on 
mean absolute deviation (MAD). Papahristodoulou and 
Dotzauer (2004) formulated two different LP models 
by transformation procedure, based on minimization of 
MAD and maximizes the minimum return (Maximin) 
formulation. These models were then compared to the 
classical quadratic programming formulation to test 
to what extent all these formulations provide similar 
portfolios. The  results  from  this  study  showed  that  
the  Maximin formulation  yields  the  highest  return  
and  risk  while  the quadratic formulation provides the 
lowest risk. In addition, all the three formulations were 
found to outperform the top equity fund portfolios in 
Sweden and performed much better than the market 
portfolio (Mokhtar et al., 2014). 

Another  linear  programming  model  for  the  
portfolio optimization is offered by Ibrahim, Kamil, 
and Mustafa (2008). In this study, the problem 
was modelled as a mean-risk bi-criteria portfolio 
optimization problem with the mean absolute negative  
deviation  of  annual  return  from  the  average  annual 
return  is  used  as  the  downside  risk.  In order to 
evaluate the performance of the proposed model, the 

authors compared the results from the proposed model 
with the results from mean-variance model and MAD 
model. According to their results, the proposed model 
provides better returns than the mean-variance and 
MAD models.  

Yousfat (2015) stated that by having a set of 
portfolio, one could minimize risk and obtain the fund 
allocation by employing the quadratic programming 
(QP) proposed by Markowitz. The main objective 
of QP is to reduce the variance, which considers the 
upside and downside parts. The QP model is defined 
as follows. 
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where ix  is the amount of invested funds in the financial assets of the firm ,i L  is the rate of 

revenue or the growth factor, ip is the highest level of the relative investment allocated to the 

shares or the bonds of the firm , ii E is the revenue of the financial asset of the period studied, and 

ijσ  is the common covariance of the revenue of the financial asset i with financial asset j. Note that 

for i j= , 2
ii iσ σ=  refers to the variance or the diagonal elements of covariance. He used QP for 

selecting the optimum portfolio of the Malaysian Stock Exchange by dealing the 10 biggest firms 

in 2014. The results showed that the optimum portfolio includes 22% of Axiata Group shares, 11% 

of Genting shares, 30% of Petronas Chemicals shares, 1% of Sime Darbi shares, and 36% of 

Tenaga Nasional shares.  

Another  quadratic  programming  model  for  the  portfolio optimization is done by Kulali 

(2016). He tested Markowitz’s mean-variance approach to 252 days of data belonging a year of 

2015 on Istanbul Stock Exchange (BIST). The author compared two hypothetical portfolios by 

considering diversification strategy: (a) 10 stocks with equal weights chosen from three different 

industries and (b) eight stocks with different weights. By employing Excel data solver, the 

empirical results exhibited that the second hypothetical provides more return than a portfolio with 

equal shares of 10 stocks.  
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portfolio optimization is done by Kulali (2016). He 
tested Markowitz’s mean-variance approach to 252 
days of data belonging a year of 2015 on Istanbul 
Stock Exchange (BIST). The author compared two 
hypothetical portfolios by considering diversification 
strategy: (a) 10 stocks with equal weights chosen from 
three different industries and (b) eight stocks with 
different weights. By employing Excel data solver, the 
empirical results exhibited that the second hypothetical 
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Best and Kale (2000) also employed QP to solve 
large-scale portfolio optimization. They proposed 
the specialization of the QP algorithm for large-scale 
portfolio optimization consists of three innovations: 
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(a) determination of good starting point for the 
QP algorithm, (b) efficient solution of the Karush-
Kuhn-Tucker system for the active constraints using 
a small kernel matrix, and (c) handling of all upper 
and lower bounds as well as breakpoints for variable 
transactions costs implicitly rather than explicitly. 
The results produce improvements of over 1000 
times in execution times for the optimization of large 
portfolios. 

In Zhang and Zhang (2011), the authors built a 
series of pivoting algorithm for solving convex QP 
and then shows how to use it together with a parameter 
technique to solve the system of linear inequalities, 
convex quadratic programming, and mean-variance 
portfolio selection problems proposed by Markowitz. 
These algorithms are brief for understanding and 
efficient for computing, as shown by the numerical 
examples and computer experiments for 1072 stocks. 
They also proved the convergence of the smallest index 
rule for convex QP.  

Cesarone et al. (2009) observed QP solve the  
Limited Asset Markowitz (LAM). Unlike the classical 
Markowitz model that can be solved using QP, the 
LAM model is modeled by adding binary variables, 

thus becoming a mixed-integer quadratic programming 
(MIQP) problem that is considerably more difficult to 
solve. The LAM is obtained as follow:
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where n is the number of assets, iµ is the expected return of asset i, ijσ is the covariance of return 

of asset i and asset j for , 1,....,i j n= , ρ is the required level of return for the portfolio, the realistic 

constraint | supp( ) |x is no more than K assets for supp( ) {i : 0}ix x= > , and the quantity ix  of each 
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asset should be limited within a given interval [ , ]i il u . He established the new method so-called 

reduction to standard QP. It tested on five new data sets involving real-world capital market indices 

from major stock markets that have been used in Chang et al. (2000). The performance of the 

portfolios obtained from the LAM model is more efficient compare to the classical Markowitz 

portfolio.  

Table 7  

Solution of Exact Approaches for Portfolio Optimization 

Authors Data analyzed 
Exact approaches 

LP MAD QP PA MIQP 

Papahristodoulo

u & Dotzauer, 

2004 

Monthly returns from 67 shares traded in 

the Stockholm Stock Exchange (SSE), 

between January 1997 and December 

2000 

     

Ibrahim et al., 

2008 

60 random stocks registered on the main 

board of Bursa Malaysia and listed on 

May 2004 

      

Yousfat, 2015 10 biggest firms posted on Bursa 

Malaysia during 2014 

     

Kulali, 2016 252 days of data belonging a year of 

2015 on Istanbul Stock Exchange 

(BIST) 

     

Best & Kale, 

2000 

Large-scale portfolio optimization      

 He established the new method 
so-called reduction to standard QP. It tested on five 
new data sets involving real-world capital market 
indices from major stock markets that have been 
used in Chang et al. (2000). The performance of the 
portfolios obtained from the LAM model is more 
efficient compare to the classical Markowitz portfolio. 

Table 7.  Solution of Exact Approaches for Portfolio Optimization

Authors Data analyzed
Exact approaches

LP MAD QP PA MIQP
Papahristodoulou 
& Dotzauer, 2004

Monthly returns from 67 shares traded in the 
Stockholm Stock Exchange (SSE), between January 
1997 and December 2000

 

Ibrahim et al., 2008 60 random stocks registered on the main board of 
Bursa Malaysia and listed on May 2004

  

Yousfat, 2015 10 biggest firms posted on Bursa Malaysia during 
2014



Kulali, 2016 252 days of data belonging a year of 2015 on Istanbul 
Stock Exchange (BIST)



Best & Kale, 2000 Large-scale portfolio optimization 

Zhang & Zhang, 
2011

Arbitrary weekend closed prices of 1072 stocks. 

Cesarone et al., 
2009

Weakly price data from March 1992 to September 
1997 for the Hang Seng, DAX, FTSE 100, S&P 100, 
and Nikkei 225 capital market indices. In addition, 
also around 2000 assets taken from the OR-Library.



Notes: LP = Linear Programming, MAD = Mean Absolute Deviation, QP = Quadratic Programming, MIQP = Mixed Integer 
Quadratic Programming, PA = Pivoting. Algorithm and missing of Shariah stock cases for the rare be obtained.
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Heuristic Approaches  
Heuristic is a popular non-deterministic 

approach for solving hard constrained problems. 
It attempts to yield a good and fast approximation 
to an optimal solution, that is, seeking approximate 
answers to the solution obtained from the exact 
approach. Requirements for mathematical 
sophistication or programming skills make this 
approach flexible because adding, removing, 
or changing objective functions or constraints 
can effortlessly be achieved (Gilli & Schumann, 
2012). There are many studies applying heuristic 
approaches to solve the problem of portfolio 
optimization. Crama and Schyns (2003) applied 
heuristic technique based on Simulated Annealing 
(SA) to an extended version of the mean-variance 
model with trading and turnover constraints. 
Such model is contained within Mixed Integer 
Quadratic Programming which is then applied 
to solve a complex portfolio selection model. 
Computational results for problems with up to 151 
stocks seem to show that the approach is promising 
for medium size problems. Computational results 
for problems with up to 151 stocks seem to show 
that the approach is promising for medium size 
problems (Mokhtar et al., 2014).  

John (2014) established five hill-climbing 
algorithms, namely HC-S, HC-S-R, HC-C, 
HC-C-R, and guided local search (GLS). Hill 
climbing, as one heuristic method, is applied to 
approximate the solution of a problem. It is first 
tested to standard portfolio optimization problem 
by retaining Markowitz’s constraints that the 
investor has a fixed budget and no short-selling. 
The algorithms are next applied to the extended 
portfolio optimization problem by considering 
cardinality constraints. Results are benchmarked 
with the threshold accepting (TA) algorithm and 
QP. The finding suggests that such five algorithms 
developed have a similar solution to the exact 
solution of QP and surprisingly outperformed TA 
in the extended portfolio optimization.

Chang et al. (2009) introduced a heuristic 
approach based on genetic algorithm (GA) 
for solving portfolio optimization problems 

in different risk measures and compared its 
performance to mean-variance model in cardinality 
constrained efficient frontier. The authors collected 
three different risk measures based upon mean-
variance by Markowitz, semi-variance, mean 
absolute deviation, and variance with skewness. 
They showed that the problems could be solved 
effectively by GA if mean-variance,  semi-
variance,  mean absolute deviation,  and variance 
with skewness were used as the measures of 
risk. They conducted empirical tests to prove the 
robustness of their heuristic method by verifying 
the three data sets collected from main financial 
markets.

Kapiamba et al. (2015) compared a bi-criteria 
problem having two conflicting criteria to optimize 
portfolio selection simultaneously. It is well known 
that such a combinatorial problem is intractable 
with exact methods for large dimension problems. 
Then meta-heuristics are useful to find a good 
approximation of the efficient set. He evaluated 
the efficiency of two heuristic methods, namely 
the simulated annealing and the genetic algorithm, 
to solve the portfolio selection problem. Results 
of the study indicated that, in terms of calculation 
time, simulated annealing appears more efficient 
than the genetic algorithm.

Busetti (2006) developed a realistic portfolio 
optimization model. He then investigates the efficiency 
of its solution by two heuristic methods, that is, GA 
and tabu search (TS). The model is based on the 
classical mean-variance approach, enhanced with 
floor and ceiling constraints, cardinality constraints, 
and nonlinear transaction costs that include a 
substantial illiquidity premium, and is applied to a 
large stock portfolio.  The solution is benchmarked 
with the insights provided by the optimization of real 
portfolios. The study showed that for large portfolios, 
the performance of genetic algorithms is three orders 
of magnitude better than that of TS.

Another interesting  solution  approach  was  
presented  by Fernández and Gómez (2007), who 
employed Hopfield neural networks  to  solve  the  
mean-variance  model  with  cardinality and  bounding  
constraints.  The  authors  also  compared  the approach  
with  GA,  TS  as well  as  SA  and  performed  
the  computational  experiments using five sets of 
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benchmark data that have been used in T. J. Chang 
et al. (2000).  Although the results showed that none 
of the four has clearly outperformed the others, when 
dealing with problem demanding portfolios with low 
investment risk, the proposed method provides better 
solutions than the other heuristics (Mokhtar et al., 
2014). There are several works not mentioned that 
have already taken steps in the direction of what the 
authors called the Research Gap section.

Research Gap

There are some missing elements in the discussion 
on stock portfolio optimization. First, the exploration 
of Shariah stock market is still limited. Ho et al. 
(2014) has exposed that the increase on the number 
of global Shariah stock indices in the world is 
evidence of relatively large growth potential and 
profitability. Moreover, some scholars also claimed 
that the performance of the Shariah stock market has 
a tendency to be preferable with regard to return and 
stable in defiance of financial crisis compared to the 
conventional ones (Abu Bakar & Ali, 2014; Karim et 

al., 2014; Reddy & Fu, 2014). In more detail, Lusyana 
and Sherif (2017) said that Indonesia, with the largest 
Muslim population in the world, was favorable by reason 
of the increasing number of investors who are concerned 
in the ethical investment. Indeed, the quantity of these 
works, which mainly refer to the Islamic stock market, 
is still less frequent than the research results related to 
data from conventional platforms.

Second, the gap in methodology, particularly on 
how to select the promising portfolio. The study on 
blending between fundamental and technical analysis is 
still lacking and has never even been discussed. Many 
researchers stick just to one of either fundamental or 
technical. Some believed that fundamental analysis is 
the only proper instrument that can comprehensively 
capture the intrinsic value of a company (Jakpar et al., 
2019; Mustilli et al., 2018; Silva et al., 2014; Suresh, 
2013). On the contrary, others claimed that technical 
analysis is more powerful because it can predict future 
risks or returns that are not yet known on the day of 
the investment decision (AlHalaseh et al., 2016; Kulali, 
2016; Lee & Eid, 2018; Mangram, 2013; Rockafellar 
& Uryasev, 2016).

Table 8.  Solution of Heuristic Approaches for Portfolio Optimization

Authors Data analyzed
Heuristic approaches

SA HC GA TS 
Crama & Schyns, 2003 Weekly prices of 151 U.S. stocks covering different 

traditional sectors for 484 weeks, from 6 January 
1988 to 9 April 1997, extracted from the DataStream 
database.



John, 2014 230 assets are from DAX stock exchange. The data 
used were daily returns over 1001 days.



Chang et al., 2009 Historical daily data collected in the HANG SENG, 
FTSE and S&P 100 with price data of 33, 93, and 99 
assets respectively from January 2004 to December 
2006.



Kapiamba et al., 2015 Artificial data  

Busetti, 2006 Arbitrary 100 largest stocks by market capitalization 
in the world.

 

Fernández & Gómez, 2007 Weekly prices listed from Hang Seng in Hong Kong, 
DAX 100 in Germany, FTSE 100 in the U.K., S&P 
100 in USA and Nikkei 225 in Japan with price data 
of 31, 85, 89, 98 and 225 assets respectively from 
March 1992 to September 1997.  

  

Notes: SA = Simulated Annealing, HC = Hill-Climbing, GA = Genetic Algorithm, TS = Tabu Search
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Third, the quadratic programming as a standard 
form in portfolio optimization still has drawback and 
require some form of modification or improvement for 
solving stock portfolio problem. Researchers have tried 
to modify quadratic programming with their respective 
findings, which have proven difficult to complete 
large-scale portfolio optimization (Best & Kale, 2000; 
Cesarone et al., 2013; Zhang & Zhang, 2011). 

Finally, another gap in methodology, especially 
on portfolio optimization. The comparative study 
between exact and approximation methods, that is, 
standard quadratic programming, modified quadratic 
programming, and heuristic approaches has never 
been studied. In handling portfolio optimization, some 
scientists only focus on the heuristic approach (Chang 
et al., 2009; Crama & Schyns, 2003; Kapiamba et al., 
2015), while others concentrate on the exact approach 
(Ibrahim et al., 2008; Kulali, 2016; Yousfat, 2015). 

Conclusion 

Stock investment has become an interesting 
topic not only in economics but also in mathematics. 
This review provided the current situation on stock 
investment, particularly the stock market, along with 
its dynamics. It is also considered a new trend of 
investments based on ethical so-called Shariah stock 
investment. Such a concept has grown to become 
one of the world’s profitable economic forces so that 
many well-known stock markets in the U.S., Europe, 
and Asia are involved in this investment. Moreover, 
Shariah stock has also been proven to be better than 
conventional, especially related to the rate of return and 
stability in a crisis. Nevertheless, the main drawback 
of investing in Shariah stocks is the limited options 
due to the screening of trade mechanisms and halal 
products. Investors in conventional stocks have so 
many options that they can tailor their portfolios to 
meet any investment objective, whereas investors in 
Shariah stocks have fewer options to pick from.   

The review highlighted techniques on stock 
portfolio selection, that is, technical analysis and 
fundamental analysis. By exploring each of the 
advantages and disadvantages of the two analyzes 
based on previous research, the stock portfolio 
assessment can be evaluated better. In view of that, 
the stock portfolio selection might be executed by 
considering the properties on fundamental analysis as 
a base choice, but it seems that it needs to be verified 

by technical analysis. Therefore the combination 
of two altered methods would rather give a more 
comprehensive decision.

The findings in this review shown that stock 
portfolio optimization eventually turns into an 
alternative tool for both theorists and practitioners in 
dealing with a financial decision. It deliberated two 
common approaches used by researchers. The exact 
approach seems to be the popular method for solving 
stock portfolio optimization rooted in Markowitz 
properties. However, based on the review, the heuristic 
approach could approximate the solution of problems 
as an exact solution for a large scale of portfolios and 
has less execution time. Therefore, this review led to 
the further development of stock portfolio optimization 
by comparing the models of the two approaches and 
their results in the real case of stock market.
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