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 The inoperability input-output model (IIM) has recently been proposed as an extension of 
conventional input-output analysis for assessing the vulnerability of interdependent infrastructures 
to various perturbations, such as natural disasters, industrial accidents, and deliberate attacks. The 
IIM framework makes use of a dimensionless risk metric called inoperability, which quantifies 
the degree of failure of a system on a scale ranging from 0 (normal state) to 1 (total failure). This 
inoperability is then assumed to propagate through any given industrial network after being induced 
by initial demand or supply-side perturbations. This work presents a fuzzy linear programming 
(FLP) model to allocate inoperability in a complex industrial network caused by a loss of natural 
resource inputs. Such losses may either be “rapid-onset” (e.g., seismic events) or “slow-onset” 
(e.g., climate change). The model seeks to maximize a dimensionless variable, γ, which modulates 
the distribution of inoperability across the sectors, as governed by input-output relationships and 
a priori inoperability limits for each of the sectors. We illustrate the use of this model with two 
illustrative cases based on scenarios of hypothetical loss of agricultural land due to climate change.
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INTRODUCTION

The impact of climate change manifests 
through socio-economic and environmental 
channels. These effects can be observed through 
increased incidence of natural disasters, variations 
in rainfall levels, changes in temperature, among 
others. The Asian Development Bank (2013) 
highlighted the vulnerability of sectors such as 
agriculture, fisheries, tourism, coral reefs, and 
human health, which involve the lower income 
strata of developing economies. Their inability 
to harness economies of scale renders a more 
vulnerable state. Food security is threatened with 
the global emergence of smallholder farming (Fan, 
Brzeska, Keyzer, & Halsema, 2013). Beyond 
the traditional indications of climate change, 
the development and mutation of new diseases 
and pests further increase the vulnerability of 
smallholders (Morton, 2007). Hence, climate 
change can essentially induce aberrant variations 
in weather patterns. Consequences of climate 
change can manifest, for example, in the form 
of drought (Santos, Pagsuyoin, Herrera, Tan, 
& Yu, 2014) or storms (Stromberg, Esteban, & 
Gasparatos, 2011), which then cause damage to 
agriculture and other economic sectors.

The inoperability input-output model (IIM) 
was first proposed by Haimes and Jiang (2001) for 
predicting the indirect effects of disruptive events 
such as natural disasters. Their work proposed 
the concept of inoperability, a dimensionless 
index in the interval [0, 1] for quantifying the 
degree of failure of physical infrastructure, where 
the limiting values of 0 and 1 signify states of 
normal operation and total collapse, respectively.  
Structurally, the original IIM was an extension 
of Leontief’s celebrated input-output model 
(Leontief, 1936), but it used a system of linear 
equations to describe the physical propagation 
of inoperability through a complex system 
composed of interdependent components. One 
of the main drawbacks of the original concept 
was the problem of calibrating the coefficients 

for physical dependencies; for example, agent-
based modeling techniques have been proposed 
(Oliva, Panzieri, & Setola, 2010). 

Santos and Haimes (2004) proposed an 
alternative interpretation of IIM based on 
demand reduction; this alternative allowed IIM 
models to be calibrated based on standard input-
output data which is routinely recorded in most 
countries as a matter of economic monitoring.  
This development led to the rapid growth of IIM 
(Greenberg et al., 2012), leading to applications 
for quantifying the ripple effects of such notable 
historical events as the 9/11 terrorist attacks 
(Santos & Haimes, 2004), the 2003 Northeast 
blackout (Anderson, Santos, & Haimes, 2007), 
Hurricane Katrina (Crowther, Haimes, & Taub, 
2007) and the Great East Japan earthquake 
(MacKenzie, Santos, & Barker, 2012). In 
addition, other published applications have 
looked at potential future disasters, including 
managing risks from influenza pandemics (Orsi 
& Santos, 2011), biofuel supply failure (Santos, 
Barker, & Zelinke, 2008), and energy shortage 
(Khanna & Bakshi, 2009). The methodology is 
particularly useful for estimating the sectorwise 
vulnerability assessment, which may be essential 
for allocating resources and priorities for risk 
management (Barker & Santos, 2010a).

The IIM methodology itself has also seen 
significant development in the form of various 
extensions of the basic, deterministic, and static 
form originally proposed by Haimes and Jiang 
(2001). The development of the dynamic form of 
IIM has allowed temporal aspects of disasters to 
be integrated into the analyses (Lian & Haimes, 
2006; Orsi & Santos, 2010), and in particular has 
led to the exploration of the effect of inventory as 
a mitigation measure (Barker and Santos, 2010b; 
Resurreccion & Santos, 2011). Leung, Haimes, 
and Santos (2007) proposed an extension 
where the initial system perturbation comes 
in the form of supply reduction, as opposed to 
demand reduction. In addition, the assumption of 
determinicity has been relaxed through the use 
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of probabilistic (Santos, 2008), fuzzy (Setola, De 
Porcellinis, & Sforna, 2009), and interval (Barker 
& Rocco, 2011) IIM variants.  In addition, there 
have been attempts to integrate IIM within an 
optimization framework to allow for prescriptive, 
rather than descriptive, modelling. Kananen, 
Korhonen, Wallenius, & Wallenius (1990) 
proposed a multi-objective input-output model 
that preceded the inoperability concept; they 
demonstrated the use of the model for identifying 
Pareto optimal solutions for hypothetical crisis 
scenarios in Finland. A rudimentary optimization-
based IIM variant was first proposed by Haimes 
and Jiang in their seminal paper (Haimes and 
Jiang, 2001).  The concept was developed further 
in a subsequent article (Jiang and Haimes, 
2004). More recently, inoperability was used 
as a measure of risk in a source-sink model for 
optimal energy resource allocation (Tan, 2011).

In this work, we propose an optimization 
model for determining appropriate actions in 
response to disasters where initial disruptions 
manifest as loss of natural resources. Such losses 
are of particular importance in assessing how 
climate change may cause economic damage 
through both fast and slow-onset disruptions.  
For example, reduced rainfall may cause 
drought which in turn leads to crop failure and 
hydroelectric power shortage. Desertification 
may also cause loss of arable land resource that 
is needed for agriculture, while the damage to 
marine ecosystems may result in the collapse 
of fisheries. Such effects are easily integrated 
through an extended form of the basic input-
output model (Chen, 1973). The rest of the paper 
is organized as follows. The development of the 
model is discussed in the next section. The main 
contribution of this work is the methodological 
development associated with the integration 
of fuzzy modeling and input-output analysis. 
Two case studies are then presented to illustrate 
the use of the resulting methodology. Finally, 
conclusions and prospects for future work are 
discussed.

MODEL DEVELOPMENT

We begin with a general input-output model 
with an environmental extension to account for 
natural resources drawn from the environment:

 
(I – A)x = y (1)

Bx = z (2)

where I is an identity matrix, A is the technical 
coefficient matrix, x is the total output 
vector, y is the final demand vector, B is the 
environmental coefficient matrix and z is the 
total resource usage matrix. The coefficients of 
B represent the direct usage of natural resources 
per unit of output of each sector. Note that B 
is not necessarily a square matrix, and as there 
may be fewer resources of concern than there 
are economic sectors, in practice, B will often 
have fewer rows than columns.

Eq. 1 may be inverted to give:

x = (I – A)–1 y (3)

Subtitution into Eq. 2 then gives:

B(I – A)–1 y = z (4)

Eq. 4 thus yields the total natural resource 
used by the economic system (z) in order to 
produce its final output (y).  Then, it can be seen 
that changes in y and z are related as follows:

(I – A)–1 dy = dz (5)

In the case of disaster-induced loss of natural 
resources, the problem is to determine dy given a 
disruption dz.  Since, as previously stated, dy has 
more rows than dz, Eq. 5 exhibits excess degrees 
of freedom, which allows for optimization of 
the system. Next, Eq. 5 may be modified so that 
disruptions are normalized into dimensionless 
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form. We define the fractional loss of final 
demand as:

u = Qdy (6)

Q = (diag(y))–1 (7) 

Likewise, we define fractional loss of natural 
resource as:

v = Rdz (8)

R = (diag(z))–1 (9) 

Then, Eq. 5 can be modified to give:

RB(I – A)–1(Q–1Q)dy = Rdz (10)

Substituting Eq. 6 and 8 into Eq. 10 gives:

RB(I – A)–1Q–1u = v (11)

This may then be expressed as:

Pu = v (12)

P = RB(I – A)–1Q–1 (13)

where matrix P characterizes the economic 
system’s internal input-output connectivity, 
its interaction with the natural environment, 
and its baseline level of activity. Given that 
the fractional loss of natural resource inputs 
into the system, v, is exogenously defined, 
and given that Eq. 12 has excess degrees of 
freedom, the following vector optimization 
problem arises:

min u (14a)

s.t.            Pu = v (14b)

The optimization may be done using various 
approaches.  For example, the Pareto frontier 
for the system may be traced via the e-constraint 
method (Haimes, Hall, & Freedman, 1975).  

Alternatively, a linear weighted objective 
function may be used:

min wTu (15a)

s.t.            Pu = v (15b)

where w is the vector of priority weights of 
the various sectors. If the Pareto frontier is 
continuous, it may also be traced by solving 
Eq. 15a and 15b for various values of w. Note 
that the problem yields the minimum GDP 
loss if the elements of w are proportionate to 
the baseline sectoral final demands before 
the disruption occurred. Since the vector u 
represents the fractional loss of final demand 
for the economic sector, relative to the baseline 
state of the system, applying a weight vector 
w which is comprised of sector-specific GDP 
contributions results in wTu being equivalent 
to the total reduction in GDP, as measured in 
monetary units. Alternatively, w may be elicited 
from stakeholder value judgments, for example 
using the Analytic Hierarcy Process (AHP) 
(Saaty, 1980).

Alternatively, a fuzzy optimization approach 
may be used (Zimmermann, 1978). This 
technique requires that predefined limits for each 
element of u to be specified. Note that the lower 
limit is more desirable as it represents lower 
magnitude of output loss. A linear scale may then 
be defined for uj signifying the desirability of its 
value in the interval [0, 1]; this is known as the 
fuzzy membership function, corresponding to a 
fuzzy goal where partial degrees of satisfaction 
are possible.  It then becomes possible to define 
the optimization model as:

 
max l (16a) 

s.t.              Pu = v (16b)

(uj – uj
max)/(uj

min – uj
max) ≥ l     ∀j (16c)

0 ≤ l ≤ 1 (16d)



DEVELOPMENT OF A FUZZY LINEAR PROGRAMMING MODEL TAN, R., ET AL 5

where l is the overall index of satisfaction of 
fuzzy goals, and uj

min and uj
max are the lower and 

upper limits of fraction loss of final demand of 
each sector j.  This formulation is based on max-
min aggregation (Zimmermann, 1978), which 
ensures that the optimal solution gives the best 
value for the least satisfied fuzzy goal.  In other 
words, the model maximizes l, which in turn 
represents the minimum degree of satisfaction 
of all the constraints defined by Eq. 16c, hence 
the term max-min aggregation.  We also note that 
this model is linear, and can thus be solved to 
global optimality without major computational 
difficulties.

In the succeeding section, the model is 
illustrated using two demonstration case 
studies and implemented using the commerical 
optimization software LINGO 12.0 (Lindo 
Systems, 2010).  The first case study is a didactic 
example, which is selected to be simple enough 
to facilitate understanding of the modelling 
framework itself. The second case study is a 

hypothetical but plausible example, illustrating 
how the model may be applied in a tropical 
country when production of a major commerical 
crop is threatened by climate change.

Sample Case Study 1

This case study is adapted from a stylized two-
sector illustrative example from Miller and Blair 
(2009); the data has been modified by adding 
100 units of a hypothetical natural resource input 
stream into the economic system, with one-fifth 
of the resource being drawn directly by Sector 
1, and the balance by Sector 2. The simplicity 
of this example is deliberately used in order to 
facilitate the illustration of the key features of the 
optimization model. Table 1 shows the economic 
and environmental flows for this economic 
system at the baseline state.

Next, it is possible to determine the intersectoral 
flow of goods as well as the natural resource 
usage, per unit of production output from each 
sector. The resulting figures are shown in Table 2.  

Table 1 
Economic and Environmental Flows in Case 1

Sector 1 Sector 2 Final Demand Total Output
Sector 1 150 500 350 1000
Sector 2 200 100 1700 2000
Resource 20 80 100 n/a

*Total resource drawn by economy 

Table 2 
Coefficients of A and B in Case 1

Sector 1 Sector 2
Sector 1 0.15 0.25
Sector 2 0.20 0.05
Resource 0.02 0.04
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It can be seen that the first two data rows comprise 
matrix A, while the last row corresponds to B.  
The coefficients for both A and B are obtained by 
dividing the associated element in Table 1 by the 
total output of the corresponding column sector. 

We then consider a disruptive event that 
causes a 10% loss in availability of the natural 
resource.  It can easily be seen that such a loss 
can result in all economic flows being scaled 
down by a similar proportion (i.e., total output 
and final demand of each sector contracts by 
10%).  However, if we suppose that the natural 
resource in question can be reallocated between 
the two sectors, appropriate damage control 
measures can be determined based on specified 
optimization criteria. Suppose that the fuzzy 
limits for fractional loss of final demand for the 
two sectors are specified, as shown in Table 3.

Table 3 
Limits for Fractional Loss of Final Demand 
in Case 1

uj
min uj

max

Sector 1 0.05 0.10
Sector 2 0.04 0.12

Solving Eq. 16 gives the optimal level of 
fractional final demand losses of the two sectors, 
as shown in the first data column of Table 4.  
Note that both sectors lose approximately 10% 
of their respective final demands, but Sector 2 
absorbs a slightly larger proportion of the damage 
than Sector 1 in fractional terms. This solution 

corresponds to an optimal value of l = 0.23, 
which means that the damage control goals set for 
the all sectors in the economy are met to at least 
23% degree of satisfaction. The resulting GDP 
loss is 203.8 units. For comparison purposes, 
corresponding results using the weighted sum 
model (Eq. 15) are also shown, using both equal 
weights (Scenario A) and weights proportional 
to baseline final demand (Scenario B). For both 
weighted sum scenarios, all the final demand 
loss occurs in Sector 2 (i.e., priority is given to 
the use of Sector 2 outputs as input for Sector 
1, at the expense of use as final product); this 
reduction corresponds to 194.2 units of GDP loss 
overall (by comparison, if all the final demand 
loss occurs in Sector 1, the GDP reduction will 
be 280.6 units; this result occurs when the ratio 
of the weight factors of the sectors fall below a 
value of about 1:7). This counterintuitive result 
may be explained as follows. Note that, from 
Table 1, only 20 units of resource are utilized by 
Sector 1, while 80 units are used up by Sector 2.  
Thus, the 10% resource loss, amounting to 10 
units, would clearly account for a larger fraction 
of the usage of Sector 1, than of Sector 2. As a 
result, greater relative losses would be incurred 
if the loss is absorbed by Sector 1. Note that 
the compensatory nature of the weighted sum 
approach allows heavy losses to be incurred by 
one sector, for as long as avoid ed losses in the 
other sector result in a better aggregate objective 
function value. On the other hand, the max-min 
aggregation used in the fuzzy model ensures that 
the degrees of satisfaction of sector-wise fuzzy 
goals are met equitably, via the global modulating 
variable l (Zimmermann, 1978).

Table 4 
Optimal Values of Fractional Loss of Final Demand in Case 1

Fuzzy 
Model

Weighted Sum Model 
(Scenario A)

Weighted Sum Model 
(Scenario B)

Sector 1 0.088 0 0
Sector 2 0.102 0.114 0.114
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Sample Case Study 2

This case study demonstrates the use of the 
model for allocating land resources that are 
degraded as a result of climate change. It has been 
noted that climate change is a serious long-term 
threat to agricultural production in many parts of the 
world, and particularly the tropics, through changes 
in precipitation, infestation risk, and soil conditions 
(Dar & Gowda, 2013). Such changes in climate may 
make crop shifting imperative, as the suitability of 
agricultural land to current crops declines (Phalan et 
al., 2013). The net effect for any given agricultural 
sector is a loss of land availability. We consider the 
case of Malaysia, where the oil palm sector accounts 
for about 36% of total agricultural output, according 
to the 2005 input-output data. The total economic 
output of this sector is about Ringgit 21.8 billion 
(the approximate exchange rate is US$1:Ringgit 
3), with much of the output being processed further 
into vegetable oil and other products (Department 
of Statistics Malaysia, n.d.). Oil palm plantations 
also account for 4.92 million hectares out of the 
7.87 million hectares of total agricultural land in the 
country (Malaysian Palm Oil Board, n.d.).  Because 
of the high water footprint of oil palm (Gerbens-
Leenes, Hoekstra, & van der Meer, 2009; Phalan 
et al., 2013), prolonged changes in precipitation 
level can potentially render current plantation lands 
unsuitable for continued cultivation in the future. In 
this case study, a hypothetical but plausible scenario 
of 10% loss of land resource is considered.  This 
may be a useful illustration of the 2014 El Niño case 
where Malaysian oil palm production was reduced 
by 10% (Lim, 2014). The input-output data has been 
aggregated into 12 sectors following the procedure 
outlined in Miller and Blair (2009).  Table 5 shows 
the coefficients of matrices A and B for this case 
study; the final row corresponds to agricultural land 
resource and comprises B.  Also, the upper and 
lower limits for fractional final demand degradation 
are given in Table 6.  In this example, the values 
used are hypothetical and serve only to demonstrate 
the methodology itself.  In practice, such limits 

may be determined based on policy decisions on 
tolerable losses (taking into account the socio-
economic context of the problem).

Solving Eq. 16 gives the optimal level of 
fractional final demand losses of the 12 sectors, 
as shown in the first data column of Table 7.  Note 
that final demand loss for non-palm agriculture 
is 15.8%, while the corresponding loss for oil 
palm is 23.6%. The loss for all other sectors in the 
economy is 7.9%, leading to an overall GDP loss 
of 8.0% relative to the baseline of Ringgit 874 
billion. This solution corresponds to an optimal 
value of l = 0.21.  It can be seen that the losses are 
equitably distributed, since the model structure 
ensures that their values fall within the a priori 
bounds given in Table 6. 

By comparison, the weighted sum model 
gives highly skewed results, as shown in the 
next two data columns of Table 7. Again, 
Scenario A corresponds to equal weights 
being assigned to all sectors, while Scenario B 
assigns weights in proportion to contribution 
to baseline GDP.  Scenario A results in 14.3% 
losses in final manufacturing demand, with no 
losses occurring elsewhere in the system; the 
corresponding GDP loss is 8.7%.  Unlike Case 
1, this example shows markedly different results 
between Scenarios A and B. When the sectors 
are weighted in proportion to their contribution 
to the GDP, the optimum outcome results in all 
losses being concentrated only in agriculture, 
with 29.2% drop in final demand for the non-
palm sector, and 100% drop for oil palm. This 
scenario also yields the least level of loss in 
GDP, at 0.7%.  In other words, in Scenario A, 
priority is given towards diverting agricultural 
output to meet final demand, at the expense of 
using the produce as an input for manufacturing. 
On the other hand, in Scenario B, priority is 
given to using agricultural output to supply the 
requirements of other sectors, at the expense of 
final demand. Note the extreme case observed for 
the oil palm sector, where the final demand drops 
to zero; the result is not completely implausible, 
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Table 6 
Limits for Fractional Loss of Final Demand in Case 2

uj
min uj

max

Agriculture, Fishery and Forestry excluding Palm Oil 0 0.2

Palm Oil 0 0.3
Mining and Quarrying 0 0.1
Manufacturing 0 0.1
Electricity, Gas and Water 0 0.1
Construction 0 0.1
Trade 0 0.1
Transportation, Communication and Storage 0 0.1
Finance 0 0.1
Real Estate and Ownership of Dwellings 0 0.1
Private Services 0 0.1
Government Services 0 0.1

Table 7 
Optimal Values of Fractional Loss of Final Demand in Case 2

Fuzzy 
Model

Weighted 
Sum Model 
(Scenario A)

Weighted 
Sum Model 
(Scenario B)

Agriculture, Fishery and Forestry excluding 
Palm Oil

0.158 0 0.292

Palm Oil 0.236 0 1.000
Mining and Quarrying 0.079 0 0
Manufacturing 0.079 0 0
Electricity, Gas and Water 0.079 0 0
Construction 0.079 0 0
Trade 0.079 0 0
Transportation, Communication and Storage 0.079 0 0
Finance 0.079 0 0
Real Estate and Ownership of Dwellings 0.079 0 0
Private Services 0.079 0 0
Government Services 0.079 0 0
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since much of the output of this sector (92.5% 
at the baseline state of the economy) is used as 
an input for the production of vegetable oils, 
oleochemicals, and other downstream products.  
Similarly, a zero final demand for the oil palm 
sector does not necessarily translate to zero level 
of output for the same sector since output is a 
sum of intermediate demand and final demand.  
Prioritizing intermediate demand will result 
to a reduced level of loss, which means that 
government regulation will play an important 
role in achieving minimal losses.

CONCLUSIONS

We have developed a fuzzy linear programming 
model for optimal allocation of inoperability 
losses arising from disaster-induced loss of natural 
resource inputs. Given an exogenously defined 
fractional loss of resource input, and linear fuzzy 
membership functions for acceptable losses in 
final economic demand for each sector of the 
economy, the model uses max-min aggregation 
to determine an optimal solution, which achieves 
the best partial satisfaction of the fuzzy goals. 
Two case studies were then used to illustrate the 
model: a simple two-sector illustrative example, 
and a more realistic case to explore the impact 
of climate change on the agricultural sector of 
Malaysia and its associated ripple effects. Future 
work on this model should explore multi-regional 
and dynamic extensions. Furthermore, its use in 
many developing countries will be hampered by 
lack of accurate or up-to-date input-output data, 
which suggests the need for better procedures for 
calibrating the model parameters. Future efforts 
can also be devoted in engaging policymakers 
for determining the limits of fractional losses 
based on the perceived criticality of each sector.  
Furthermore, we also propose the inclusion of 
sensitivity analysis to investigate the extent to 
which optimal solutions could be affected by 
changes in model parameter and coefficient 

values.  Finally, we envision future work focusing 
primarily on the application of the method 
developed in this paper.
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