How Flexible are Wages Across Barangays? Exploring the Wage Curve Relationship in Pasay City

Presented by Andrew Adrian Yu Pua

Universität Bielefeld

September 22, 2010

What is the wage curve?

- Employees who work in areas of high unemployment earn less, other things constant, than those who are surrounded by low unemployment.
- The wage curve is a curve describing the negative relationship between the logarithm of wages and the logarithm of the local unemployment rate while controlling for worker characteristics, labor market characteristics, industry level characteristics, etc.
- The most common finding is that the estimated unemployment elasticity of pay is -0.1.

Research questions

- Does a wage curve exist in the Philippines? If it does, how do the different levels of aggregation affect the robustness of the wage curve? Do estimates of the unemployment elasticities of pay vary across different groups?
- After controlling for worker characteristics and labor market characteristics, how large are labor market spillovers? How do unemployment rates of geographically close regions interact?

Wage curve literature

- Econometric specifications for the wage curve?
- Panel data vs cross sectional data?
- S Choice of measurement for wages and unemployment rate?
- Oiscriminating between multiple theories?

Variable definitions

- wage_{ir} represents the annual wages of the *i*th individual living in barangay *i*
- **2** U_r represents the unemployment rate of *r*th barangay
- Spatial weights matrix W, where *i*th row and *j*th column of the spatial weights matrix is denoted as w_{ij} where it takes the value of 1 if the *i*th barangay is a neighbor of the *j*th barangay. Premultiplying the 200 × 200 spatial weights matrix to the 200 × 1 log of unemployment rate vector gives the spatial unemployment rate S_{ir}.
- $A_r = \sum_i w_{ri} E_i$ and $T_r = \sum_i w_{ri} (E_i E_r)^{1/2}$ represent possible spatial spillover terms.

Empirical models

- (1) Model 1: $\log wage_{ir} = \alpha_1 \log U_r + \epsilon_{1,ir}$
- 2 Model 2: log wage_{ir} = $\alpha_1 \log U_r + \alpha_2 (\log U_r)^2 + \epsilon_{2,ir}$
- Model 3: $\log wage_{ir} = \alpha_1 \log U_r + \alpha_2 (\log U_r)^2 + \gamma_1 A_r + \gamma_2 A_r \times \log U_r + \epsilon_{3,ir}$
- Model 4: $\log wage_{ir} = \alpha_1 \log U_r + \alpha_2 (\log U_r)^2 + \gamma_1 A_r + \gamma_2 T_r \times \log U_r + \epsilon_{4,ir}$
- Model 5: $\log wage_{ir} = \alpha_1 \log U_r + \alpha_2 (\log U_r)^2 + \gamma_1 A_r + \gamma_2 A_r \times \log U_r + \gamma_3 S_{ir} + \gamma_4 S_{ir} \times \log U_r + \epsilon_{5,ir}$
- Model 6: $\log wage_{ir} = \alpha_1 \log U_r + \alpha_2 (\log U_r)^2 + \gamma_1 T_r + \gamma_2 T_r \times \log U_r + \gamma_3 S_{ir} + \gamma_4 S_{ir} \times \log U_r + \epsilon_{6,ir}$
- Augment Models 1 to 6 with standard control variables in wage equations.
- Parameter of interest: unemployment elasticity of pay

 [∂] log wage_{ir}
 [∂] log U_r
 [−] = α₁ + 2α₂ log U_r + γ₂A_r + γ₄S_{ir}
 [−]

Unemployment Rates Across Zones

Zone	Mean	Std. Dev.	Zone	Mean	Std. Dev.
1	44.39	7.67	11	48.66	7.13
2	36.63	6.06	12	40.69	4.81
3	35.07	5.96	13	41.25	4.68
4	39.48	4.14	14	44.89	5.36
5	39.96	3.51	15	51.06	13.33
6	34.62	5.06	16	50.73	6.80
7	38.63	5.93	17	38.47	6.53
8	39.90	6.74	18	48.39	7.01
9	40.50	8.41	19	43.09	2.04
10	50.65	5.48	20	37.16	4.67

Spatial Unemployment Rates Across Zones

Zone	Mean	Std. Dev.	Zone	Mean	Std. Dev.
1	51.47	3.22	11	43.84	3.79
2	39.55	2.23	12	43.65	2.75
3	38.96	1.36	13	42.09	4.01
4	40.71	2.00	14	44.94	2.74
5	38.46	1.71	15	49.98	4.51
6	35.75	2.08	16	44.90	1.82
7	38.96	2.78	17	39.34	2.00
8	40.10	3.98	18	41.92	2.62
9	44.57	5.34	19	44.55	2.07
10	49.97	2.71	20	37.99	3.70

Average Annual Wages Across Zones

Zone	Mean	Std. Dev.	Zone	Mean	Std. Dev.
1	102015.75	58955.866	11	121750.08	97644.222
2	103310.6	81088.9	12	115516.69	85638.005
3	107232.81	84612.172	13	109844.48	125749.24
4	106234.11	83433.302	14	137946.96	1102974.1
5	100347.7	75214.287	15	106151.85	65507.678
6	366642.49	10977972	16	99405.561	72627.862
7	110485.97	93545.747	17	107921.08	77036.554
8	100095.98	78598.863	18	107481.47	112358.59
9	110404.08	76034.103	19	98176.622	103576.33
10	124886.94	131184.3	20	113861.85	77085.778

Estimates of Unemployment Elasticity of Pay

	Without	With			
	Demographics	Demographics			
Model 1	-0.1936***	-0.0866***			
	(0.0166)	(0.0157)			
Model 2	-0.1962***	-0.0848***			
	(0.0170)	(0.0162)			
Model 3	-0.3010***	-0.1408***			
	(0.0234)	(0.0228)			
Model 4	-0.3831***	-0.1999***			
	(0.0281)	(0.0274)			
Model 5	-0.2705***	-0.1281***			
	(0.0256)	(0.0248)			
Model 6	-0.4234***	-0.2362***			
	(0.0324)	(0.0314)			
n	49083	49083			
Legend: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$					
Robust standard errors are in parentheses.					

Estimates of Unemployment Elasticity of Pay Across Different Occupations

	Government				Service		
	Officials	Professionals	Technicians	Clerks	Workers		
Model 1	-0.4185***	-0.0957*	-0.2142***	-0.1737***	-0.2227***		
	(0.0949)	(0.0579)	(0.0454)	(0.0371)	(0.0262)		
Model 2	-0.4487***	-0.0965	-0.2191***	-0.1676***	-0.2271***		
	(0.1041)	(0.0598)	(0.0465)	(0.0384)	(0.0276)		
Model 3	-0.3694***	-0.4436***	-0.3234***	-0.3277***	-0.2262***		
	(0.1280)	(0.0852)	(0.0830)	(0.0629)	(0.0353)		
Model 4	-0.4742***	-0.3532***	-0.2108**	-0.2938***	-0.3756***		
	(0.1704)	(0.1001)	(0.0954)	(0.0757)	(0.0408)		
Model 5	-0.2765**	-0.4699***	-0.3430***	-0.3300***	-0.2065***		
	(0.1393)	(0.0932)	(0.0824)	(0.0674)	(0.0395)		
Model 6	-0.3825*	-0.3881***	-0.2806***	-0.3424***	-0.4276***		
	(0.1959)	(0.1129)	(0.0963)	(0.0853)	(0.0490)		
n	2597	3999	4453	5511	18190		
$1 \text{ or or } d = 10^{10} + 10^{10}$							

Legend: * p < 0.10, ** p < 0.05, *** p < 0.01

Robust standard errors are in parentheses.

Estimates of Unemployment Elasticity of Pay Across Different Occupations

	Farmers		Plant	Unskilled		
		- 1		Uniskilleu		
	Fisherfolk	Trades	Operators	Workers		
Model 1	0.1779	-0.0751	-0.0799*	-0.0048		
	(0.7277)	(0.0639)	(0.0462)	(0.0516)		
Model 2	0.2510	-0.0368	-0.0667	-0.0098		
	(0.9292)	(0.0662)	(0.0473)	(0.0517)		
Model 3	0.1199	-0.2524***	-0.1932***	-0.1538**		
	(1.0286)	(0.0875)	(0.0673)	(0.0740)		
Model 4	-0.1773	-0.1332	-0.2533***	-0.2579***		
	(1.0187)	(0.0111)	(0.0740)	(0.0958)		
Model 5	-0.4417	-0.2607***	-0.0376	-0.1577**		
	(1.3775)	(0.0909)	(0.0832)	(0.0785)		
Model 6	-0.9852	-0.2111*	-0.0650	-0.3047***		
	(1.4481)	(0.1224)	(0.0991)	(0.1061)		
n	42	3576	3760	5243		
Legend: * p < 0.10, ** p < 0.05, *** p < 0.01						
Robust standard errors are in parentheses.						

Controlling for Demographics

	-					
	Government				Service	
	Officials	Professionals	Technicians	Clerks	Workers	
Model 1	-0.2203**	-0.0572	-0.0477	-0.1362***	-0.1355***	
	(0.0884)	(0.5580)	(0.0449)	(0.0373)	(0.0256)	
Model 2	-0.2504***	-0.0588	-0.0402	-0.1269***	-0.1385***	
	(0.0966)	(0.0576)	(0.0454)	(0.0385)	(0.0271)	
Model 3	-0.0871	-0.3169***	-0.1157	-0.2694***	-0.1039***	
	(0.1243)	(0.0887)	(0.0839)	(0.0619)	(0.0350)	
Model 4	-0.2901*	-0.2754***	-0.0168	-0.2344***	-0.2222***	
	(0.1639)	(0.0978)	(0.0951)	(0.0746)	(0.0404)	
Model 5	-0.0147	-0.3212***	-0.1562*	-0.2817***	-0.0986**	
	(0.1333)	(0.0990)	(0.0817)	(0.0660)	(0.0391)	
Model 6	-0.2609	-0.2876***	-0.1030	-0.2905***	-0.2695***	
	(0.1860)	(0.1114)	(0.0944)	(0.0832)	(0.0485)	
n	2597	3999	4453	5511	18190	
Legend: * $p < 0.10$. ** $p < 0.05$. *** $p < 0.01$						

Robust standard errors are in parentheses.

Controlling for Demographics

	Farmers,		Plant	Unskilled		
	Fisherfolk	Trades	Operators	Workers		
Model 1	-0.5308	-0.0033	-0.0368	-0.0041		
	(0.7074)	(0.0640)	(0.0452)	(0.0493)		
Model 2	-0.7731	0.0370	-0.0192	-0.0132		
	(0.8603)	(0.0656)	(0.0463)	(0.0487)		
Model 3	-0.5761	-0.1074	-0.1393**	-0.1163		
	(1.1141)	(0.0875)	(0.0646)	(0.0732)		
Model 4	-1.1313	-0.0021	-0.1818**	-0.2151**		
	(0.9787)	(0.1092)	(0.0719)	(0.0940)		
Model 5	-0.7165	-0.1305	-0.0013	-0.1212		
	(1.7194)	(0.0908)	(0.0805)	(0.0787)		
Model 6	-1.3055	-0.0890	-0.0084	-0.2577**		
	(1.7994)	(0.1197)	(0.0967)	(0.1048)		
n	42	3576	3760	5243		
Legend: * <i>p</i> < 0.10, ** <i>p</i> < 0.05, *** <i>p</i> < 0.01						
Robust standard errors are in parentheses.						

Where could I be wrong?

- Can OLS can be used to estimate the wage curve?
- Ocan the parameter of interest be consistently estimated by OLS?
- I have neglected the possibility that a household member may be working in a place other than Pasay City.
- I also neglected the place of work of the respondent. Is it in the same location as the barangay of residence of the respondent?
- What if certain types of workers may influence labor market conditions?
- The descriptive statistics suggest that the levels of unemployment rate in Pasay City are extremely high yet these individuals still reside in Pasay City. This may suggest that most of these individuals work outside of Pasay City and this casts some doubt on the computed unemployment elasticities.