The Geographic Profiling of Poverty and Accessibility

(The Case of Eastern Samar and Siguijor Provinces)

By

Alexis M. Fillone, PhD Engr. Nicanor Roxas Jr. (+) Cristela Goce-Dakila, PhD

In loving memory of

(+) Cristela Goce-Dakila, PhD

Flow of Presentation

- I. Background and Objectives
- II. Theoretical Consideration
 - Poverty definition
 - SCI definition
 - Accessibility
- III. Methodology
- IV. Data and Analysis
 - SCI data
 - Accessibility data
 - Regression models
 - Poverty, Accessibility and Gender
- V. Policy Applications
- VI. Summary of Findings, Conclusion and Recommendations

Source: Philippine Travel Destination Guides

Fig. 1.1 The geographic location of the two provinces

Objectives of the Study

The following are the objectives of the study:

1. to define and develop accessibility models in the context of the poverty problem of the country,

2. to determine the extent to which accessibility largely in its spatial dimension is one of the contributing factors that cause poverty,

to determine the role accessibility plays in availing of basic social services (focusing on several of the social services, like access to education, to health services, and economic activities),
 to establish proxy variables that could serve as determinants of the lack of or availability of accessibility variables, and
 to determine the effect of poverty and accessibility relations on gender.

Poverty Definition

From the National Statistical Coordination Board (NSCB)

Poverty line – may be viewed as the minimum income required to meet the food requirements and other non-food basic needs

Poor – individuals and families whose incomes fall below the official poverty threshold defined by the government

From the Social Weather Station (SWS)

Poor - are those household heads who rate their own families as *mahirap* (poor)

The Single Composite Index (SCI) of CBMS

> Reflects a representation of unmet needs in the local government unit

> The CBMS Composite Indicator is one way of ranking and identifying needy households that may be prioritized as beneficiaries of development interventions

reflects living standards in a particular community.

➤The index is measured, using a bottom-up approach, starting at the household level. At the household level, it is derived by counting the number of attained needs out of the 14 CBMS core indicators using a dichotomous choice (0 or 1) decision variable

➤ The poorest households are the ones with the most unmet needs. At each geopolitical level, it is the average unmet needs or unattained indicators of the households (CBMS, 2005).

>At the barangay level, the equation form of how Brgy_SCI is computed as follows:

$$Brgy_SCI = \sum_{i=1}^{14} \left(\frac{Number \ of \ HH \ with \ unmet \ needs \ i \ in \ the \ Barangay}{Total \ number \ of \ HH \ in \ the \ Barangay}\right)_i$$

Table 3.1 The CBMS 14 Poverty Indicators and their Decision Variables

Poverty Variables	Binary Choice / Description
1. HH_wMaln05	0 - without malnourished children 0-5 years old/without children between 0-5 years old
	1 - with malnourished children 0-5 years old
2. HH_wDeath05	0 - without child death 0-5 years old/without children 0-5 years old
	1 - with child death 0-5 years old
3. HH wDeathPreg	0 - without death due to pregnancy related causes/Not applicable (no pregnancy in the HH)
	1 - with death due to pregnancy related causes
4. HH Squat	0 - formal settler
	1- informal settler
5. HH-MSH	0 – not living in makeshift housing
	1 - living in makeshift housing
6. HH_ntSWS	0 - with access to safe water
	1 - without access to safe water
7. HH_ntSTF	0 - with access to sanitary toilet
	1 - without access to sanitary toilet
8. HH_wntElem612	0 - all members 6-12 years old attending elementary/no members 6-12 years old
	1 - with members 6-12 years old not in elementary
9. HH_wntHS1316	0 - all members 13-16 years old attending high school/no members 13-16 years old
	1 - with members 13-16 years old not in high school
10. HH povp	0 - non poor HH
	1 – poor HH
11. HH Subp	0 - subsistently non-poor
	1 - subsistently poor
12. HH Fshort	0 - did not experienced food shortage
	1 - experienced food shortage
13. HH_wUnemp15ab	0 - all members in the labor force are employed
	1 - with unemployed members of the labor force
14. HH wVicter	0 - no victims of crime
	1 - with victims of crime

Accessibility

- is the ease with which one could avail of the social services and economic opportunities laid in geographic space

- distance or travel time as the primary measure of accessibility

Poverty and Accessibility

Poverty = f(Accessibility, socio-economic characteristics, other factors)

SCI = f(Accessibility, socio-economic characteristics, other factors)

 $SCI = f(Accessibility) + \varepsilon$

 $SCI = \propto_0 + \sum_{i=1}^n \propto_i x_i$

where:

 α_0 = the constant coefficient, error term, uncaptured povertyrelated variables

 α_i = the coefficient of significant accessibility variable $x_{i,i} = 1,..,n$

Methodology

Data and Analysis

Table 4.1 Number of accessibility variables in both the household, barangay, and municipal levels

Province	Household Level	Barangay Level	Municipal Level
	No. of households	No. of Barangays	No. of municipalities
	and accessibility	and accessibility	and accessibility
	variables	variables	variables
Eastern Samar	65,535	596	23
Siquijor	19,311	134	6
Total	84,846	730	29

Figure 5.1 The population distributions of the Brgy SCI variables in Eastern Samar and Siguijor

Figure 5.2 The population percent distributions of the Brgv SCI variables in Eastern Samar and Siguijor

	Population Parameters					
		Standard				
Selected Core Indicators (N = 596)	Mean	Deviation	Min.	Max.		
Malnourished children 0-5 (%)	7.30	11.20	0.20	54.50		
Child deaths 0-5 (%)	0.97	1.14	0.00	5.80		
Women deaths due to pregnancy-related causes						
(%)	0.46	0.43	0.00	1.80		
Children not attending elementary 6-12 (%)	24.53	5.52	15.60	40.90		
Children not attending high school 13-16 (%)	45.73	11.09	33.90	78.00		
Persons in the labor force who are unemployed						
(15 years old and above) (%)	20.65	5.61	11.00	35.30		
Other Poverty-related Variables		•				
Households below poverty threshold (%)	67.62	9.11	47.20	84.40		
Households below food threshold (%)	57.57	11.50	36.30	79.00		
Households who experience food shortage (%)	18.39	14.91	5.20	68.40		

Table 5.2 Descriptive parameters of selected core indicators of the different municipalities in Eastern Samar (Barangay Level).

Table 5.3 Descriptive parameters of selected core indicators of the different municipalities in Siquijor (Barangay Level)

Population Parameters					
Mean	Standard Deviation	Min.	Max.		
2.34	2.74	0.00	7.58		
0.35	0.28	0.00	0.60		
0.90	0.86	0.00	1.80		
19.43	4.60	13.72	25.81		
30.51	5.99	23.69	38.13		
16.22	1.32	14.60	18.00		
73	40 X2				
44.63	20.05	6.26	59.75		
33.82	16.46	4.56	49.49		
4 25	3 11	0.70	8 70		
	Mean 2.34 0.35 0.90 19.43 30.51 16.22 44.63 33.82 4.25	Population F Standard Mean Deviation 2.34 2.74 0.35 0.28 0.90 0.86 19.43 4.60 30.51 5.99 16.22 1.32 44.63 20.05 33.82 16.46 4.25 3.11	Population Paramete Standard Min. 2.34 2.74 0.00 0.35 0.28 0.00 0.90 0.86 0.00 19.43 4.60 13.72 30.51 5.99 23.69 16.22 1.32 14.60 44.63 20.05 6.26 33.82 16.46 4.56 4.25 3.11 0.70		

Figure 6.1 Transport network in Eastern Samar

Purpose	Prevalent	Average s	peed by road	type (kph)	Water transport		
and destination of	Transport				(kph, knots)		
travel	Mode	National	Provincial	Barangay	Inland	Ocean	
		Road	Road	Road	water	Water	
Elementary School	Tricycle	25	20	15	8	12	
High School	Tricycle	25	20	15	8	12	
Hospital	Private	40	30	20	8	12	
	vehicle						
Market/Economic	Jeepney,	30	25	20	8	12	
Centers	Minibus						

Table 6.1 Average travel speed by transport mode in Eastern Samar Province.

Table 6.2 Travel time equations for Eastern Samar Province.

Purpose/destination	Prevalent		Travel time equation (min)					
of travel	Transport	National	Provincial	Barangay	Water trai	nsport		
	Mode on	Road	Road	Road	Inland	Ocean		
	Land				water	Water		
Elementary School	Tricycle	2.4 <i>S</i>	3.05	4.0 <i>S</i>				
High School	Tricycle	2.4 <i>S</i>	3.05	4.0 <i>S</i>				
Hospital	Private	1.55	2.05	3.05				
	vehicle				7.55	5.0S		
Market/Economic	Jeepney,	2.05	2.45	3.05				
Centers	Minibus							
	Walking	6	20.05					

S = length of road/waterway, in km

Figure 6.2 Transport network in Siguijor Island

Purpose of travel	Prevalent	Average speed by road type (kph)				
	Transport Mode	National	Provincial	Barangay		
		Road	Road	Road		
Going to Elementary	Tricycle	25	20	15		
School						
Going to High School	Tricycle	25	20	15		
Going to Hospital	Private vehicle	40	30	20		
Going to Market/	Jeepney/Minibus	30	25	20		
Economic Centers						

Table 6.3 Average travel speed of transport modes in Siquijor Province.

Table 6.4 Travel time equations for Siguijor Island

Purpose/destination of	Prevalent	Travel time equation (min)			
travel	Transport Mode	National	Provincial	Barangay	
		Road	Road	Road	
Elementary School	Tricycle	2.4 <i>S</i>	3.05	4.0 <i>S</i>	
High School	Tricycle	2.4 <i>S</i>	3.05	4.0 <i>S</i>	
Hospital	Private vehicle	1.55	2.05	3.05	
Market/Economic	Jeepney,	2.05	2.45	3.05	
Centers	Minibus				
	Walking		20.05		

S = length of road/waterway, in km

The following parameters of accessibility were considered for each barangay:

- 1. Estimated travel time (in min) going to the elementary school campus (x₁)
- 2. Estimated travel time (in min) going to the high school campus (x_2)
- 3. Estimated travel time (in min) going to a hospital (x_3)
- 4. Estimated travel time (in min) going to the town center (x_4)
- 5. Estimated travel time (in min) going to major markets and economic centers (x₅)
- 6. Whether the barangay is in the poblacion (town center) or not $(x_6) a$ dummy variable
- 7. Location of the barangay with respect to the national road (x_7) a dummy variable
- 8. Number of households with telephone in the barangay (x_8)
- 9. Whether the barangay is an island barangay or not (x_9) a dummy variable
- 10. Number of households with vehicles in the barangay (x_{10})
- 11. Number of households with telephone and computer in the barangay (x_{11})

Accessibility of High Schools in the Island Province of Siquijor

Accessibility of Hospitals in Eastern Samar

Eastern Samar

Figure 6.10 Estimated locations of public markets and town centers in Siquijor Province

	Eastern	Samar	Siquijor		
Parameter	Population	Standard	Population	Standard	
	mean	Deviation	mean	Deviation	
Estimated travel time going to					
the elementary school campus	7 3 2	5.86	5.08	4.15	
$(x_1, in min)$	1.52	5.00	5.00	4.15	
Estimated travel time going to					
the high school campus (x ₂ , in	32.07	43.67	8.79	5.05	
min)					
Estimated travel time going to a	43 17	57.07	15 11	7 52	
hospital $(x_3, in min)$	45.17	57.07	15.11	1.55	
Estimated travel time going to	27 74	66.51	11.25	6.06	
the town center $(x_4, in min)$	57.74	00.54	11.25	0.00	
Estimated travel time going to					
major markets and economic	62.92	70.15	16.12	7 84	
centers in the province (x ₅ , in	05.02	/9.15	10.15	7.04	
min)					

Table 7.1 Description of important parameters related to accessibility

Figure 7.6 Comparison of average SCI values whether the barangay is a poblacion barangay or not (x6) Figure 7.7 Comparison of average barangay SCI values with respect to the location of the barangay to the national road (x7)

Figure 7.8 Island or not an island barangay SCI comparison between Eastern Samar and Siquijor (x9)

	Eastern	Samar	Siquijor		
Parameter	Population	Standard	Population	Standard	
	mean	Deviation	mean	Deviation	
Number of hh with					
vehicles in the barangay	15.60	22.52	40.18	30.94	
(x ₁₀ , veh)					
Number of hh with phone					
in the barangay $(x_8,$	28.97	39.42	-	-	
phones)					
Number of hh with phone					
and computer in the	2.87	6.66	-	-	
barangay $(x_{11}, no. of both)$					
phone and computer)					

Table 7.2 Other parameters that could be related to accessibility

	BRGY_SCI	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	x ₇	x ₈	x ₉	x ₁₀	x ₁₁
BRGY_SCI	1											
x ₁	.1521	1										
x ₂	.4022	.1828	1									
x ₃	.5031	.2917	.7366	1								
x ₄	.3296	.1396	.9388	.7080	1							
x ₅	.4400	.2162	.8197	.8479	.8427	1						
x ₆	4409	.0471	3452	2900	3348	2253	1					
x ₇	5032	1646	5406	5706	5228	4879	.4954	1				
x ₈	5000	0882	3158	3493	2940	3310	.2825	.4298	1			
x ₉	0167	0516	.2685	.0407	.3559	.2103	1287	2349	0299	1		
x ₁₀	4048	1016	2127	2640	1742	2446	.1474	.2872	.8667	.0574	1	
x ₁₁	4064	0626	2052	2282	1978	2807	.2409	.2780	.8421	0680	.7881	1

Pearson's correlation of variables for Eastern Samar

Pearson's correlation of variables for Siquijor

	BRGY_SCI	X ₁	X ₂	X3	X ₄	X ₅	x ₆	X ₇	x ₁₁
BRGY_SCI	1								
x ₁	.1907	1							
x ₂	.2709	.4839	1						
X3	.3620	.2169	.3910	1					
x4	.2176	.0107	.2648	.3081	1				
X ₅	.4645	.0637	.4911	.6860	.4142	1			
x ₆	2657	0174	1722	0962	3703	1426	1		
X ₇	1237	2328	3598	1703	4997	1042	.2892	1	
x ₁₀	4455	3251	4722	4229	3636	4611	.5071	.3515	1

Figure 7.15 Histogram of the residuals of Eq. (12)

Figure 7.17 Partial regression plot of the regression residual with x_2

Observed Cum Prob Figure 7.16 Normal probability plot of the residuals of Eq. (12).

Figure 7.18 Partial regression plot of the regression residuals with x_5

Other indicators of poverty in the CBMS

povp % - which is the percentage of household in the barangay level below the poverty threshold,

subp_% - which is the percentage of household in the barangay living below the food threshold, and

fshort_% - is the percentage of household in the barangay level that are experiencing food shortage.

Correlation of Poverty Indicators

Barangays in Eastern Samar Barangays in Siguijor

		povp_	supb_	fshort_
	SCI	%	%	%
SCI	1			
povp_%	0.784	1		
supb_%	0.763	0.968	1	
fshort_%	0.502	0.222	0.214	1

		povp_	subp_	fshort_
	SCI	%	%	%
SCI	1			
povp_%	0.874	1		
subp_%	0.875	0.962	1	
fshort_%	0.316	0.134	0.102	1

Summary of regression models developed relating poverty and accessibility in the *barangay* level

Eq.	Regression Models	R ²		
No.				
	Eastern Samar Models			
12	$SCI = 3.0040 + 0.0073x_2 + 0.0022x_3 - 0.0102x_4 + 0.0040x_5 - 0.5952x_6$	0.486		
	$-0.3047x_7 - 0.0072x_8$			
14	$SCI = 2.2581 + 0.1579 \ln x_2 + 0.1307 \ln x_3 - 0.1792 \ln x_4 + 0.1592 \ln x_4$	0.447		
	$x_5 - 0.2865 x_7 - 0.4781 x_6 - 0.0063 x_8$			
15	$x = 0.0712$ (0.9491 = 0.1936 x = 0.0535 x $\binom{1}{2}$)	0.463		
or	$SCI = x_5^{0.0712} \cdot e^{(0.0471 - 0.050)x_6^2 - 0.0505x_8}$			
16				
17	$povp_{\%} = 78.0578 - 0.0565x_4 + 0.0604x_5 - 18.9906x_6 - 4.6689x_7$	0.448		
	$-0.1820x_8$			
	Siguijor Models			
13	$SCI = 0.9755 + 0.0197x_1 + 0.0277x_5 - 0.4110x_6$	0.282		
18	$povp_{6} = 22.194 + 0.837 x_{1} + 1.201 x_{5} - 17.519 x_{6}$	0.260		
Integrated Models				
19	$SCI = 2.5167 + 0.0094x_{22} + 0.0029x_{23} - 0.0107x_{24} + 0.0049x_{25} - 0.0107x_{24} + 0.0049x_{25} - 0.0049x_{25} - 0.00094x_{25} - 0.0009x_{25} - 0.0009x_{$	0.464		
	$0.5198x_{26} - 0.0130x_{20}$			
20				
or	$SCI = x_{22}^{0.0622} \cdot x_{22}^{0.0604} \cdot x_{24}^{-0.0717} \cdot x_{25}^{0.1416} \cdot e^{(0.4198 - 0.2210x_{26} - 0.0546x_{20}^{0.5})}$	0.463		
21	22 23 24 25			
22	$SCI = x_{25}^{0.1716} \cdot e^{(0.4984 - 0.2185 x_{26} - 0.0588 x_{20}^{0.5})}$	0.448		
23	$povp_{\%} = 70.542 - 0.380 x_{20} + 0.061 x_{25} - 16.547 x_{26}$	0.404		
24	$povp_{\%} = 65.585 - 3.955x_{20}^{-1/2} + 4.302 \ln x_{25} - 12.992 x_{26}$	0.453		

POLICY APPLICATIONS

- Road Improvement in Eastern Samar
- Consolidation of Hospitals in Eastern Samar
- Elementary School in Every Barangay in Siquijor

Estimated the impact of these policies/programs on poverty levels through the developed equations of poverty and accessibility

A. Road Improvement in Eastern Samar

Source: DPWH, 2005

Figure 8.1 Proposed road development plan for Eastern Samar (DPWH, 2005)

• Using Eq. (22) to estimate the impact of road development on poverty through access to major economic centers (x_{25}) in Eastern Samar.

• Since $x_{26} = 0$ (the barangays affect are not poblacion barangays and $x_{20} = 0$, there is no household with vehicles in each of the hinterland barangay affected

$$SCI = x_{25}^{0.1716} \cdot e^{(0.4984 - 0.2185x_{26} - 0.0588x_{20}^{0.5})}$$

Table 8.2 Impact of road development on poverty through access to major economic <u>markets</u> in Eastern Samar using Eq. (22)

Barangays	SCI Values due to access to	Difference	
in Borongan	Before road development	After road development	in SCI
			values
Pinanag-an	3.799	3.517	0.282
Campesao	2.293	2.277	0.016
San Gabriel	3.138	2.973	0.165
San Juan	3.104	2.994	0.110
<u>Sohutan</u>	2.657	2.502	0.155
Surok	2.962	2.931	0.031
Total	17.953	17.194	0.759
Average	2.992	2.866	0.127
% Decrease = [(Total SCI _{before} - Total SCI _{after})/Total SCI _{before}] x 100 = 4.23 %			

• total aggregated decrease in the SCI values (due to access to major economic markets only) in all six towns totaled 0.759 (4.23%).

B. Consolidation of Hospitals in Eastern Samar

- Proposed to close 5 of the 12 hospital in the province of Samar

Municipality	Impact of travel time			
	on poverty through the SCI variable		Change in	
	Current Available	With Hospital	SCI	
	Hospitals	Consolidation		
Arteche	0.60	0.76	- 0.16	
Balangiga	0.44	0.44	0.00	
Balangkayan	0.53	0.63	- 0.10	
Borongan	0.47	0.47	0.00	
Can-avid	0.50	0.62	- 0.12	
Dolores	0.53	0.68	- 0.15	
Gen. Macarthur	0.50	0.50	0.00	
Giporlos	0.51	0.59	- 0.08	
Guiuan	0.40	0.40	0.00	
Hernani	0.56	0.58	- 0.02	
Jipapad	0.92	0.94	- 0.02	
Lawaan	0.54	0.54	0.00	
Llorente	0.32	0.66	- 0.34	
Maslog	0.90	0.91	- 0.01	
Maydolong	0.63	0.64	- 0.01	
Mercedes	0.45	0.45	0.00	
Oras	0.59	0.60	- 0.01	
Quinapondan	0.40	0.56	- 0.16	
Salcedo	0.57	0.58	- 0.01	
San Julian	0.57	0.57	0.00	
San Policarpio	0.52	0.55	- 0.03	
Sulat	0.56	0.56	0.00	
Taft	0.43	0.43	0.00	
Total	12.44	13.66	- 1.22	
Average	0.54	0.59	- 0.05	
% Decrease = [(Total SCIbefore - Total SCIafter)/Total SCIbefore] x 100 = -9.81%				

Table 8.3 Impact of hospital consolidation in Eastern Samar on poverty

 $SCI = 2.2581 + 0.1579 \ln x_2 + 0.1307 \ln x_3$ $- 0.1792 \ln x_4 + 0.1592 \ln x_5$ $- 0.2865 x_7 - 0.4781 x_6 - 0.0063 x_8$

the potential effect of the consolidation of hospitals in Eastern Samar from the current 12 hospitals to the proposed consolidated seven hospitals would be a 9.81% increase in the poverty level of the province through the SCI parameter (due to access to hospitals only)

C. Elementary School in Every Barangay in Siquijor

Table 8.4 Existing number of barangays with elementary schools in Siguijor				
Municipality	With Elementary	Without Elementary	Total	
	School	School		
	Number (%)	Number (%)	Number (%)	
Enrique Villanueva	4 (28.6)	10 (71.4)	14 (100.0)	
Larena	5 (21.7)	18 (78.3)	23 (100.0)	
Lazi	14 (77.8)	4 (22.2)	18 (100.0)	
Maria	11 (50.0)	11 (50.0	22 (100.0)	
San Juan	9 (60.0)	6 (40.0)	15 (100.0)	
Siguijor	15 (35.7)	27 (64.3)	42 (100.0)	
	58 (43.3)	76 (56.7)	134 (100.0)	

Municipality	Impact of travel time schools on poverty th	Change in		
	Existing elementary Elementary school in		SCI	
	schools	every <u>barangay</u>		
Enrique Villanueva	0.121	0.040	0.081	
Larena	0.137	0.039	0.098	
Lazi	0.042	0.025	0.017	
Maria	0.146	0.083	0.063	
San Juan	0.056	0.034	0.022	
Siguijor	0.089	0.034	0.055	
Total	0.591	0.255	0.336	
Average	0.100	0.042	0.056	
% Decrease = [(Total SCIbafore - Total SCIafter)/Total SCIbafore] x 100 = 56.85%				

Table 8.5 Impact of an elementary school in every barangay on poverty in Siguijor

$SCI = 0.9755 + 0.0197x_1 + 0.0277x_5 - 0.4110x_6$

• By providing an elementary school in every barangay in Siquijor, the estimated effect on poverty through the SCI parameter would be an estimated aggregate total decrease of around 0.336.

• The decrease is 56.85% in the aggregate total of the SCI of all the barangays (due to access to elementary schools only) in the current situation

Poverty, Accessibility and Gender

Relationship of poverty, accessibility and gender in Eastern Samar

Figure 7.27 Population percentages of males and females not in high school in Eastern Samar in relation to travel time to the nearest high school location

Figure 7.29 Population percentages of unemployed males and females in Eastern Samar in relation to the nearest major economic center

Relationship of poverty, accessibility and gender in Siquijor

Figure 7.31 Population percentages of males and females not in high school in Siquijor in relation to high school location

Figure 7.33 Population percentages of unemployed males and females in Siquijor in relation to the nearest major economic center

In the case of Eastern Samar, the important exogenous accessibility variables that could be related to poverty in the barangay level are

- the estimated travel time to a high school campus,
- the estimated travel time to the municipal center,
- the estimated travel time to a hospital,
- the estimated travel time to major markets in the province, and
- dummy variables
 - whether the barangay is a barangay in the poblacion or not and
 - whether the barangay is located along the national road or not.
- Proxy variables that could be related to accessibility
 - the no. of households with telephones in the barangay
 - the no. of households with vehicles in the barangay

In the case of Siquijor, the important exogenous accessibility variables that could be related to poverty in its barangays are

- the estimated travel time to an elementary school campus,
- the estimated travel time to the major economic centers, and
- the dummy variable whether the barangay is a barangay in the poblacion or not.

• The model fit represented by the multiple coefficient of determination (R²) between poverty (SCI) and accessibility aggregated in the barangay level in all the models developed ranged from **0.448 to 0.486 for Eastern Samar** and is a bit lower in **Siquijor which ranged from 0.260 to 0.282**.

• The lower fit in Siquijor shows that a good network of roads connecting all the major social services and economic centers would reduce the relevance of accessibility in the poverty equation.

- 1. The most significant indicator of spatial accessibility that is highly correlated to other poverty indicators is access to the major economic centers in both provinces in terms of travel time.
 - The spatial assignment of markets is a strategic poverty alleviation measure
- 2. Regardless of access to schools more males are not in school than females. On the other hand, regardless of access to places of employment (i.e. town centers and major municipal markets), more females of working age are unemployed than males.
 - Children of school age, regardless of gender, should be given equal opportunity to study
 - Equal employment or livelihood opportunities to the youth of working age regardless of gender

Recommendations

1. The CBMS data was done at the household level. In order to conduct an accessibility analysis in the household level, the household locations have to be properly located in space in order to obtain accurate accessibility measures from the household going toward the points of destination of the members of the household.

2. In the measure of accessibility, only travel time from the barangay to the point of destination was used. It would also be interesting to obtain information about the cost of travel like how much fare is needed to go to a given destination. Considering the cost of travel in the accessibility measure and when cost is combined with travel time, a generalized measure of cost can be used to express accessibility.

Recommendations

The policy applications showed a clear link between poverty and accessibility using CBMS data, and more importantly, could be used to predict the impact of planned social infrastructures on poverty levels.

• This approach could be used in guiding periodic planning activities of local governments such as the forecasting and programming of social infrastructure and services at the sectoral level.

• Also applicable to the development of specific programs and projects by the private sector (e.g., aid agencies, non-government organizations), especially in relation to poverty alleviation and their appropriate site location.

Acknowledgment

The authors would like to thank

- DLSU-AKI through the office of the Vice Chancellor for Research (VCR) for the research grant

- the CBMS staff, especially Dr. Celia M. Reyes (CBMS Network Leader), Ms. Alellie B. Sobrevinas and Ms. Jasminda P. Asirot

- to Mr. Kerwin Patria, Secretary of the Saguniang Bayan of Siquijor, Siquijor

- to Mr. Henry Afable, Head of the Provincial Planning Office of Eastern Samar, and Ms. Nitz Cablao, Provincial Planning Officer of Eastern Samar

THE END

Thank you for listening!