THE USE OF SMART DEVICES FOR THE DETECTION OF AFLATOXIN IN GRINDED CORN FEEDS

The Angelo King Institute for Economic and Business Studies

DR. GIL NONATO C. SANTOS

AH Aflatoxin contaminates agricultural commodities, plants or animal derived food, in warm and humid conditions primarily in tropical countries such as the Philippines. Although the type and degree of contamination is dependent on its concentration, its effect becomes critical when biomagnified. In this study, a rapid, simple and portable detection was developed.

A smart-device sensor was used to measure the pH of the samples with aflatoxin and compared side by side with the pH of pure samples; Concentrations in parts per billion (ppb) were calculated for each of the samples from the obtained pH readings; Cyclic voltammetry was also conducted to further study the electrochemical properties of the mixture with aflatoxin.

A H

Aflatoxins are toxic carcinogenic secondary metabolites produced predominantly by two fungal species: Aspergillus flavus and Aspergillus parasiticus. These fungal species are contaminants of food crops as well as animal feeds and are responsible for aflatoxin contamination of these agricultural products. The toxicity and potency of aflatoxins make them the primary health hazard as well as responsible for losses associated with contaminations of processed foods and feeds [Gourama, H. et al., 1995]. Determination of aflatoxins concentration in food crops and animal feeds is thus very important to create policies to be made by Food Safety Regulatory Agencies (FRSA). However, the current mechanism of aflatoxin detection does not provide immediate result, requires technical expertise and are costly [Paniel. N. et al., 2010].

duct

In the duction of the second s

In several literatures, determination of aflatoxin requires a variety of complex sample preparations, characterization and analysis. Such methods include High-Performance Liquid Chromatography (HPLC), thin layer chromatography, fluorescence, and immunoenzymatic assays. However, detection using a smart device has not been fully explored when it comes to detecting toxins.

The use of a smart devices received relative attention in the research field due to its simple and abrupt mechanism of detection with its application as a real-time evaluation instrument and currently being explored in different fields. This research developed a simple method for aflatoxin extraction and detection in grinded corn feeds obtained from the Bureau of Animal Industry (BAI). However, the study was limited to the detection of Aflatoxin B1 (*C* 17H12O6).

ductio

Significanc

Detection using a smart device sensor has been currently explored du to its application as a real-time evaluation instrument of aflatoxin presence in agricultural food materials which benefits several agencies such as the Department of Health (DOH), Department of Agriculture, Bureau of Food and Drugs (BFAD), Local government units, etc. In addition, Having a simple and abrupt detection of such food contaminants are significant to creation of policies which are handled by the Food Safety Regulatory Agencies (FRSA).

Ohjectives

This research study aims to develop a simple technique for aflatoxin detection.

Specifically, this study aims to:

Create a simple procedure in preparing aflatoxin samples
 Utilize carbon and silver material as sensor for aflatoxin detection

3. Determine the response of the sensors Through capacitance voltage measurements

4. Determine the significant difference of the response of the sensors to the target liquid and background/interferents
5. Determine the sensitivity, specificity, and accuracy of the training sets.

6. Identify Concentration of aflatoxin though smart device pH sensor

GLIVES

IR

Score & Limuations

- The study is limited to the detection of Aflatoxin B1 ($C_{17}H_{12}O_6$) with the parameters set as follows:
 - 100 mL of solution will be used for all samples.
 - 1:4 ratio of water to methanol will be used. Other type of alcohol will not be tested as a solution.
 - Experiments will done at room temperature under normal lighting.

However, the percentage composition of the B1 type compared to the other type of aflatoxins will not be discussed as well as the specific properties of the analyte.

Aflatoxin

- Aflatoxins are a group of secondary metabolites produced by fungi. Different aflatoxins exist, including aflatoxins B1, B2, G1 and G2. Aflatoxin B1 is mainly produced by two fungi, Aspergillus flavus and Aspergillus parasiticus *(Creppy, E.E., 2002)*
- Aflatoxins, when ingested, inhaled or adsorbed through the skin, have carcinogenic, hepatotoxic, teratogenic and mutagenic effects in human and animals (rats, ferrets, ducks, trout, dogs, turkeys, cattle and pigs even at very small concentrations). (Anwar-UI_Haq & Iqbal, 2004)
- Among all types of aflatoxin, B1 is the most toxic and commonly present in feeds (*Waliyas, F.; Reddy, S.V. , 2009*)

Aflatoxin

- There are a lot of explored and well studied techniques that has been used to detect aflatoxins (Torres-Pacheco, I., 2011). To name a few:
 - ✓ High Performance Liquid Chromatography
 - ✓ Electrochemical Immunosensors
 - ✓ Fluorescence
 - ✓ Ultra-violet absorption
 - ✓ Spectrometry
 - ✓ Biosensors
 - ✓ Voltammetry

Using pH as a basis of detection of aflatoxin is somehow not been fully explored.

Aflatoxin

- Recent development of the mechanism of aflatoxin detection and extraction involves the use of organic solvents such as either methanol or acetonitrile or acetone mixed in different proportion with small amounts of water
- Aflatoxin determination based on immunoassay technique requires extraction using mixture of methanol-water (8 + 2 v/v)

(Wacoo, A., et.al., 2014)

<u>TEST</u>

- Measure the pH of each set up using the SPARVUE software.
- Make sure to submerge the tip of the pH sensor to acetone and let it dry before using the sensor to another set up.
- Make 5 trials and take the average measurements.
- Perform cyclic voltammetry using the same set up. Avoid using the same chip for the different set up with aflatoxin.

PREPARATION OF MATERIALS

- Aflatoxin samples are obtained from BAI and is fully sealed in a plastic container.
- 100 mL of solution will be used for all set ups.
- Preparation of corn feeds with aflatoxin should be done under the fume hood.

ANALYSIS

- Calculate concentration from pH readings.
- Plot the concentration and pH to compare.
- Compare results with the CV graph.
- Compare concentration results from other standardized measurements of other agencies.
- Characterize sensing device.

Note: Safety measurements and procedures should be observed in handling and disposing aflatoxin samples.

Aflatoxin.

osps. of each of the samples were placed in 100ml water-methanol solution

pH SPARKVUE Sensor

Set up in measuring pH

Cyclic Voltammetry Set up

Phenom SEM/EDX

RESULTS

000076

1 H m

20kV X 5,000

Pure Distilled Water (100 mL) Running Time: 30 seconds

Distilled Water with Methanol (1:4 ratio, 100 Ml) Running Time: 30 seconds

Distilled Water with Methanol (1:4 ratio, 100 Ml) and Aflatoxin (Bottle 1) Running Time: 30 seconds

Distilled Water with Methanol (1:4 ratio, 100 Ml) and Aflatoxin (Bottle 2) Running Time: 30 seconds

Distilled Water with Methanol (1:4 ratio, 100 Ml) and Aflatoxin (Bottle 3) **Running Time: 30 seconds**

30

PHVS GONGENTRATION

000076

1 🗠 m

20kV X 5,000

Concentration Vs PH Graph

Gyclic Voltammetry

000076

1 14 m

20kV X 5,000

Cyclic Voltammetry

Cyclic Voltammetry (CV) is an electrochemical technique which measures the current that develops in an electrochemical cell under conditions where voltage is in excess of that predicted by the <u>Nernst</u> <u>equation</u>. CV is performed by cycling the potential of a working electrode, and measuring the resulting current.

Water

Figure 1: Three trials graph of cyclic voltammetry using BDminstat with Triple Distilled Water as the analyte.

Water with Methanol

Aflatoxin Mix (Bottle 1)

Figure 3: Three trials graph of cyclic voltammetry using BDminstat with Aflatoxin mixed in water-methanol solution as the analyte. Aflatoxin is from Bottle No. 1 which contains an unknown amount of toxin.

Aflatoxin Mix (Bottle 2)

Figure 4: Three trials graph of cyclic voltammetry using BDminstat with Aflatoxin mixed in water-methanol solution as the analyte. Aflatoxin is from Bottle No. 2 which contains an unknown amount of toxin.

Aflatoxin Mix (Bottle 3)

Figure 5: Three trials graph of cyclic voltammetry using BDminstat with Aflatoxin mixed in water-methanol solution as the analyte. Aflatoxin is from Bottle No. 3 which contains an unknown amount of toxin.

Figure 6: Average Current vs. Voltage Cyclic Voltammetry plot of all samples.

000076

1 H m

20kV X 5,000

To confirm observations and results, a cyclic voltammetry (CV) test was conducted; A CV plot provided the electrochemical properties of the sample analyte. The CV device is composed of three working electrodes; counter, reference and the working electrode.

The morphological structure of the three electrodes were examined using the Double Unit Phenom Pro with Advance Imaging System for Scanning Electron Microscopy (SEM).

Figur 7: Scanning Electron Microscopy (SEM) images of (a) counter electrode, (b) reference electrode and (c) working electrode. Top row shows SEM images with 2000 magnification and bottom row shows 8000 magnification. The elemental composition of the electrodes was characterized using Energy Dispersive X-Ray (EDX).

Figure 8: Atomic percent composition of the three electrodes using Energy Dispersive X-Ray (EDX).

FINDING & CONCLUSIONS

The concentration of aflatoxin in corn feed samples can be obtained using a conversion of the pH reading of the samples to its equivalent parts per billion using the formulas below:

 $[concentration] = 10^{-pH}$

To get the concentration to ppb:

 $\begin{bmatrix} concentration \end{bmatrix} = \frac{moles}{L} x \frac{molar mass \left(\frac{g}{mol}\right)}{1} x \frac{1000 mg}{1g} x \frac{1ppm}{1mg/L} x \frac{1000 ppb}{1 ppm}$

Molar Mass or Aflatoxin B1 $(C_{17}H_{12}O_6) = 312 \frac{g}{mol}$

The calculated ppb concentrations are close to values reported by The United States Food and Drug Administration (USFDA)

рН	CONCENTRATION (ppb)
8.69	0.65
7.10	27.10
6.63	98.27
6.13	236.89
6.09	258.13
	pH 8.69 7.10 6.63 6.13 6.09

Figure on the right: Results gathered from the USFDA.

Figure on the left: Results gathered from the experimental set up.

Aflatoxin leve (in parts per billion)	Commodities and species	Commodities and species	
10	All products, except milk, designated for humans		
0.5	Milk		
20	Corn for immature animals and dairy cattle		
100	Corn for breeding beef cattle, swine and mature poultry		
200	Corn for finishing swine		
300	Corn for finishing beef cattle		
300	Cottonseed meal (as a feed ingredient)		
20	All feedstuff other than corn		

ndings & Conclus

- Based on the presented results from previous slides, the mixture of water-methanol with or without aflatoxin is IRREVERSIBLE (transfer of electrons from the analyte to the electrodes are slow).
- The potential also dropped when the aflatoxin sample was added to the mixture of water and methanol. This is possibly due to the breakage of the intermolecular forces of the aflatoxin molecules. Thus extraction of aflatoxin is possible using the water-methanol solution.

e A: Standard CV graph for a versible REDCX real tion.

Thank you.

The Angelo King Institute for Economic and Business Studies DR. GIL NONATO C. SANTOS