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Abstract:  The future of the stock market may never be predicted consistently, nor its past behavior understood entirely, 
but any knowledge gained from observing it could help decide on a sound investment strategy.  In this study, I looked at 
the daily returns of the Philippine Stock Exchange index (PSEi) from March 1, 1990, to January 31, 2017, and see how 
the data relates to the mathematically verifiable aspects of the noise theory and efficient market theory (EMT).  In relation 
to the noise theory, I looked at the occurrences of anomalies.  For the EMT, I made use of discrete-time Markov chains to 
determine some trends.  The study results showed that most stock market anomalies are present while persistent behavior 
is hardly present in the dataset. Furthermore, I applied day ahead time domain forecasting methods starting with the simple 
moving average models to autoregressive moving average models.  The augmented Dickey-Fuller test indicate that the daily 
returns are a stationary series although the ACF and PACF plots have consistently shown non-zero correlations for lags 
1, 9, 12, 13.  I have obtained AR(1) and ARMA(1,2) processes for the data and both models indicate the same forecasting 
accuracy via the Diebold-Mariano test.  Although these time domain processes were unable to predict the random noise in 
the data, these processes were accurate in predicting the signs of the values as supported by the Pesaran-Timmermann test.
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History is our only source of hard statistics 
(Bogle, 2010, p. 258).  Although in the case of the 
stock market, the past is not always predictive of the 
future.  Any information that becomes available to 
investors has the potential of changing their investing 
behavior immediately; profitable information could be 
immediately acted upon while negative news could just 
as easily drive investors out.  Nevertheless, investors 
should heed the advice of Malkiel (1999, p. 278): 
“Even if stock prices move randomly, you shouldn’t.” 

The Philippine Stock Exchange (PSE) came about 
when the Manila Stock Exchange and Makati Stock 
Exchange were unified on December 23, 1992 (“About 
PSE,” n.d.).  The Philippine Stock Exchange index 
(PSEi) is the health barometer of the Philippine stock 
market.  It consists of the 30 largest listed companies 
based on the public float (the portion of a company’s 
shares owned by public investors), liquidity (the ease of 
owning and selling without having change in the price), 
and market capitalization (product of the company’s 
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outstanding shares and the stock price per share).  For 
a company to qualify, it must have at least a public 
float of 12%, it must be in the top quartile based on 
the median daily value per month for at least nine out 
of 12 months, and it must be in the top 30 based on the 
full market capitalization (Dumlao-Abadilla, 2017). 

According to the PSE (2016), in 2015, the number 
of stock market accounts has experienced a 46.1% 
compounded annual growth since 2010.  As of 2015, 
the total number of market accounts is 712,549 with 
98.5% belonging to local investors.  Among the total 
accounts, 95.2% are retail accounts while the rest 
are institutional accounts.  Although the number of 
accounts has been growing, the numbers indicate that 
less than 1% of the population invests directly in the 
stock market, but institutional accounts such as mutual 
funds or pensions may also include a good number of 
local investors.  

Investing in stocks, real estate, and small business is 
believed to be the best way of building wealth (Tyson, 
2011).  Among the three, investing in stocks is the 
easiest investment vehicle to get into.  One can start 
investing in the PSE for as little as PhP5,000 (US$95) 
through an online broker; and with the launching of 
the Personal Equity and Retirement Account (Agcaoili, 
2016), some index funds that track the PSEi can be had 
for as little as PhP1,000 (US$19).

In this paper, I looked at the behavior of the stock 
market through an analysis of the daily returns obtained 
from the closing prices of the PSEi from February 28, 
1990, up to January 31, 2017.  I looked at the behavior 
in relation to mathematically verifiable aspects of the 
noise theory and efficient market theory (EMT) such as 
the existence of several anomalies and the correlation 
structure of the process.

Although most studies or theories on the stock 
market were based on what happened in the Wall 
Street, which is the home of the New York Stock 
Exchange (NYSE) and the Nasdaq Stock Exchange 
(NASDAQ), it would be interesting to see if these 
observations translate to the local stock market.  The 
Standard and Poor 500 (S&P 500) index is considered 
a good representation of equities with a large market 
capitalization listed as common stocks in the NYSE 
or NASDAQ.  The correlation between the annual 
returns of the S&P 500 index and PSEi from 1991 to 
2016 is 0.363242 which indicates a positive but weak 
linear relationship.  

PSEi Data

PSE provided the dataset of closing prices.  From 
the daily closing prices, I determined the daily rate of 
return as

    (1) 
 
where k = 2,3,..., and xk denotes the closing price of 
the kth day.  I studied a time series of daily returns 
with 6,641 data points that started on March 1, 1990, 
until January 31, 2017.  The average daily return and 
standard deviation of the dataset are 0.0403% and 
1.4769%, respectively.  The coefficient of variation 
(ratio between the standard deviation and mean) is 
3.6452, which translates to high variability in relation 
to the mean.

From the daily returns, the effective rate of return 
over k days can be computed as

     (2)

Kellison (1991) defined the effective rate of return as 
“the amount of money that one unit invested at the 
beginning of a period will earn during the period, where 
interest is paid at the end of the period” (p. 4).  Taking 
the effective rate of return enables the comparison of 
the interests earned over the same length of time.  

If the interests are to be compared over different 
time horizons (total length of time an investor holds 
the investment), the compound annual growth rate 
(CAGR) can be computed, which is the corresponding 
nominal rate when interest is compounded annually.  
Having n years with k trading days, the corresponding 
compound annual growth rate over those years is

     (3)

Note that results of Equations (1), (2), and (3) are the 
decimal representation of the rate of return, so the 
result has to be multiplied by 100% to obtain the rate 
of return.  

I determined the CAGR of investment horizons of 
length n (= 1,2, ..., 20) over 1991 to 2016.  For each 
n, I computed the CAGR over the intervals 1991 to 
1991 + n – 1, 1992 to 1992 + n – 1,  until 2016 – n 
+ 1 to 2016.  Observe that as the length of the time 
horizon increases, the number of intervals decreases.  
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In general, for each n, the sample size is 26 – (n – 1).  
So for a time horizon of, say, five years, I obtained the 
CAGR of the 22 time intervals 1991-1995, 1992-1996, 
1993-1997, until 2012-2016.

Figure 1 shows the range (the difference between 
the maximum value and minimum value) of the CAGR 
for each investment horizon.  For an investment 
horizon of 1, the minimum value is -48.2867% and 
the maximum value is 154.7831% but staying a year 
more reduces the range immensely with a minimum of 
-26.1708% and a maximum of 67.58928%.  In general, 
as n increases, the range decreases which indicates a 
decrease in the dispersion or variability.   

Other measures of variation also support the 
decreasing variability or dispersion as shown by the 
range.  The standard deviation also decreased from 
40.96643 to 1.830528 as  increased from one year to 
18 years; for 19 and 20 years, the standard deviations 
are 1.848485 and 2.369687, respectively.  In a dataset 
of investment returns, the reciprocal of the coefficient 
of variation can be thought of as the Sharpe ratio which 
is the measure of the risk-adjusted return for each 
investment horizon.  The Sharpe ratio is the annual 
rate of return (above the risk-free rate of return on the 
U.S. Treasury bills) per unit of risk as measured by the 
standard deviation (Bogle, 2010, p. 96).  I can argue 
that there is no such thing as a risk-free investment and 
use the average CAGR for the average annual rate of 
return.  In an investment horizon of 1–19 years, the 
Sharpe ratio increased from 0.381119 to 3.122225; 
and at an investment horizon of 20, the Sharpe ratio is 

2.496877.  This implies that, historically, an investment 
horizon of 19 gives the best return per unit of risk 
added.

  
Noise Theory

Graham and Zweig (2005) introduced the parable 
of Mr. Market—he is an obliging business partner 
who keeps the investor updated with the value of their 
investment on a daily basis.  Mr. Market sometimes 
offers to buy or sell whatever the investor is interested 
in, and although he manages to occasionally give a fair 
value, there are instances when his enthusiasm or fear 
gets the best of him, resulting to prices that are either 
very high or very low.  Graham likened the behavior 
of the stock market to Mr. Market’s manic depression.  
In the noise theory model, trading is conducted by 
ill-informed investors who act on sentiment rather 
than rational thinking (Cunningham, 2001, p. 26).  
Examples of such behaviors are acting on tips and 
rumors, high portfolio turnover rates, buying high and 
selling low, and paying excessive management fees 
for poorly managed funds (Cunningham, 2001, p. 27). 

Cunningham (2001) used Mr. Market’s bipolar 
disorder to explain the occurrence of bursts (daily 
rates of return exceeding 3%) or busts (daily drops 
exceeding 3%) and anomalies.  The largest daily rate 
of return of the PSEi is 17.55% which occurred on 
January 22, 2001. This is the first trading day after 
Gloria Macapagal-Arroyo was sworn in as the 14th 
president of the Republic on Jan 20, 2001, which was 

Figure 1.  Historically, an investment horizon of at least 17 years guarantees that all the CAGRs are positive.
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a Saturday (“2001 in the Philippines,” n.d.).  That burst 
was market enthusiasm over the promise of a stable 
leadership after the 2nd EDSA Revolution which 
removed Joseph E. Estrada from the Office of the 
President of the Philippines.  Incidentally, the second 
largest daily rate of return of 16.48% occurred on 
November 6, 2000, which is a week before the start of 
the impeachment trial of Joseph E. Estrada that started 
on November 13, 2000, until January 17, 2001 (“2000 
in the Philippines,” n.d.). The largest daily drop of the 
PSEi is -12.26% which occurred on October 27, 2008.  
Most global stock markets plunge by more than 10% on 
October 24, 2008 (Kumar, 2008) and October 27, 2008, 
is the first trading day after the global market meltdown.  

Calendar Effect

Most unexplained stock market phenomena is 
related to the calendar such as the weekend effect 
(prices are generally lower on Mondays and higher on 
Fridays), month effect (prices rise at the end and the 
beginning of months), and January effect (prices rise 
in January; Cunningham, 2001 p. 11).  By examining 
the returns, the anomalies are also observable in the 
PSEi data.  

The January effect is also known as the turn-of-
the-year effect, and some investors even use this as an 
investing strategy in which entry to the market is made 
during the last week of December until the first two 

weeks of January.  I computed for the effective rate of 
return at the turn of the year using Equation (2) over 
the last five trading days of December to the first 10 
trading days of January.

The compound rates of return at the turn of the 
year varied from -11.4945% to 13.5153%.  Out of the 
26 years in the dataset, the effective rate of return at 
the turn of the year was only negative five times; and 
at the turn of the 21st century, negative returns were 
experienced twice (2008 and 2016).  The average 
effective rate of return at the turn of the year is only 
3.2712%.  Nevertheless, this strategy shows that when 
carried out consistently, it could be profitable.  See 
Figure 2 for a comprehensive summary of the turn of 
the year compound returns.

Furthermore, I also looked at the average effective 
rate of return for each month using Equation (2) 
where  varies over the number of trading days in a 
month.  Figure 3 shows that December and January 
have the best average effective rates of return.  The 
worst average of -3.5898% is obtained during August 
which is traditionally part of the Ghost Month Festival.  
This month is believed to bring bad luck and some 
activities are to be avoided to prevent it; opening a 
business or signing contracts are a few of such activities 
(Requintina, 2016).  

At the turn of the month, it is also observed that 
prices tend to rise.  I checked its presence in the PSEi 
by, initially, looking at the average return for each day 

Figure 2. The largest compound rate of return over the last five trading days of December to the first 10 trading days 
of January of the indicated year is 13.5153% which was obtained at the turn to the year 1992 while the largest drop is 

-11.4945% which was obtained at the turn to the year 1995.
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of the month.  The highest average rate of return is 
0.3985% which occurred on the 31st.  Figure 4 shows 
that most of the positive average returns are clustered 
at the start and the end of the month.

Because of this clustering, I computed for the 
average effective rate of return that covers the last 
three trading days of the previous month to the first 
three trading days of the current month.  I applied 
Equation (2) over the six days mentioned above to 
compute for the average rate of return at the turn of the 
month.  There are 322 turn-of-month in the dataset and 
the average effective rate of return is 0.9446%.  Not 

all months have its first trading day on the 1st so the 
first three trading days may cover up to the 5th which, 
incidentally, has the second highest average return rate 
of 0.2327%.  The average return rate declines after 
the 5th and behaves flatly until practically at the end 
of the month.  

At the turn of the week, it has been observed that 
there is euphoria on Fridays and apprehensions on 
Mondays.  I checked its existence on the data by taking 
the average percent change of each trading day of the 
week.  As shown in Figure 5, this behavior is apparent, 
although Tuesday has the worst average return rate of 

Figure 3.  The best month to invest in the market is in December followed by January 
which shows an average monthly effective rate of 3.7217% and 2.7785%, respectively.

Figure 4. The average daily return rate on the last three days of the month are all positive with the last day 
having twice as much return compared to practically any day of the month.  On average, the rates of return 

at the start of the month are increasing on the first three days.
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Figure 5. Taking the averages of the daily rates of return for each weekday indicates that although Tuesday 
has, historically, the worst daily return the stock market still tends to go down on Mondays. 

Figure 6.  The normal quantile plot for the returns of each day generally falls on a straight line except 
for the extreme values, which indicates that the datasets can be assumed to be normally distributed. 
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-0.0810% compared to Monday which has a negative 
average return rate too of -0.0175% while Thursday has 
the best average return rate of 0.1010%.  The averages 
for the last three days of the week are so close to each 
other that these values may not even be statistically 
different.  The averages on Wednesday, Thursday, and 
Friday are all at least twice as much as the average daily 
return rate of the entire dataset which, as mentioned 
earlier, is 0.0403%.  

I performed a one-way analysis of variance 
(ANOVA) to confirm that the averages for each day 
are statistically not all equal.  An ANOVA works 
under the assumption that the datasets are normally 
distributed, so I generated the normal quantile plot 
of the returns for each day.  Figure 6 shows that the 
normal quantile plots generally follow a straight line 
except for some small and large values.  This indicates 
that it is safe to assume that the datasets come from a 
normal distribution.  

Tables 1 and 2 show the results from the single-
factor ANOVA.  The p-value for the ANOVA is 
0.001612 which indicates that at the significance level 
of a = 0.05 the null hypothesis that the averages of the 
returns are all equal is rejected.  This result supports 
the alterative hypothesis that the averages are not all 
equal.  Recall that if the p-value is less than or equal 
to a, the null hypothesis is rejected and the sample is 
said to support the alternative hypothesis.

I performed a pairwise analysis on the averages 
to determine which pairs are statistically different via 
a two-tail two-sample t-test for equal means.  Before I 
performed the t-test for each pair, a two-sample F-test 
for variances to each pair must be run to determine 
whether the variances are statistically equal or not.  The 
null hypothesis for this test is that the variances are equal 
while the alternative hypothesis is that the variances 
are unequal. In Table 1, the values of the variances for 
the pairs Wednesday/Thursday and Tuesday/Friday are 
quite close, and the F-test for these pairs fail to reject 
the null hypothesis at the significance level of a = 0.05 
as shown in Table 3.  This means that for these pairs, 
the two-sample t-test can be applied, assuming equal 
variances while using the two-sample t-test for assuming 
equal variances for the rest of the pairs.

I applied the appropriate two-sample t-test for equal 
means based on the result of the two-sample F-test 
for variances.  The null hypothesis for this test is that 
the means of the returns for each day are equal with 
the alternative hypothesis that the means are unequal.  
Table 4 contains the p-values for the two-sample t-test 
for equal means and the results show that, except for 
the pairs Tuesday/Wednesday, Tuesday/Thursday, and 
Tuesday/Friday, the means for each pair of days are 
statistically equal.  

Because of the result of the two-sample t-test 
for equal means, I performed an ANOVA involving 

Table 1.  Results of F-test for Variances

SUMMARY
Groups Count Sum Average Variance
Monday 1289 -16.6097 -0.01289 2.997435
Tuesday 1358 -116.243 -0.0856 1.895877
Wednesday 1360 135.9542 0.099966 2.110462
Thursday 1337 138.2081 0.103372 2.113121
Friday 1297 131.3079 0.10124 1.841276

Table 2.  ANOVA Test Results

ANOVA
Source of Variation SS df MS F p-value F crit

Between Groups 40.14446 4 10.03611 4.589616 0.001612 2.373271
Within Groups 14510.94 6636 2.1867

Total 14551.09 6640     
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Table 3.  Results of Two-Tailed, Two-Sample F-Test

Monday Tuesday Wednesday Thursday Friday
Monday 4.96E-17 9.29E-11 1.31E-10 1.45E-18
Tuesday 4.96E-17 0.024145 0.023301 0.297557
Wednesday 9.29E-11 0.024145 0.490719 0.006535
Thursday 1.31E-10 0.023301 0.490719 0.0063
Friday 1.45E-18 0.297557 0.006535 0.0063

Table 4.  Two-Sample T-Test Results

Monday Tuesday Wednesday Thursday Friday
Monday 0.233399 0.070046 0.062973 0.062316
Tuesday 0.233399 0.000641 0.000541 0.000439
Wednesday 0.070046 0.000641 0.951485 0.981364
Thursday 0.062973 0.000541 0.951485 0.968953
Friday 0.062316 0.000439 0.981364 0.968953

 
Monday, Wednesday, Thursday, and Friday; the 
resulting p-value is 0.130437 which indicates that at 
the significance level of a = 0.05 the null hypothesis 
that all the averages are equal is accepted.  

In some stock markets, it is observed that the returns 
on Mondays and Fridays are significantly different 
from the other days where returns on Mondays are 
significantly lower while returns on Fridays are 
significantly higher.  I verified this claim by applying 
a one-tail two-sample t-test for equal means on pairs 
involving Monday and Friday.  

For the pairs involving Monday, the null hypothesis 
is that the average returns are equal, and the alternative 
hypothesis that the average return on Monday is less 
than the average return of the day it was compared to. 
The pairing provided p-values of 0.116699, 0.035023, 
0.031487, and 0.031158 when Monday is paired 
with Tuesday, Wednesday, Thursday, and Friday, 
respectively.  The results indicate that at a = 0.05, 
the null hypothesis for the pairs Monday/Wednesday, 
Monday/Thursday, and Monday/Friday are rejected, 
and conclude that the average return on Monday is 
less than the average return on Wednesday, Thursday, 
and Friday. 

For the pairs involving Friday, the null hypothesis 
is that the average returns are equal, and the alternative 
hypothesis is that the average return on Friday is greater 
than the average return of the day it was compared 
to.  Results show the p-values of 0.031158, 0.00022, 
0.490682, and 0.484477 when Friday is paired 

with Monday, Tuesday, Wednesday, and Thursday, 
respectively.  The results indicate that at a = 0.05, 
the null hypothesis for the pairs Friday/Monday and 
Friday/Tuesday is rejected.  Therefore, the average 
return on Friday is greater than the average return on 
Monday and Tuesday. 

Efficient Market Theory

The EMT traces its roots to the random walk model 
of stock prices which indicates that current stock prices 
are independent or uncorrelated to previous stock 
prices.  EMT believes that stock prices fully reflect 
all the information (including but not limited to price 
histories) about a stock (Cunningham, 2001, p. 23), 
unlike the noise theory model where trading is based on 
information that is unrelated to the fundamental asset 
values (Cunningham, 2001, p. 26).  There are three 
forms of such efficiency—weak form, semi-strong 
form, and strong form.

In its weak form, a stock price is a reflection only of 
the information from its price history.  The semi-strong 
form believes a stock price is a function of its price 
history and all publicly available information about 
it; while the strong form indicates that stocks prices 
are a function of all existing information (publicly 
available or not) about a stock.  The strong form of 
efficiency in the EMT has been discredited by insider 
trading scandals.  It has been observed that possession 
of nonpublic information has been used to make 
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abnormally high returns (Cunningham, 2001, p. 25).  
In short, only the weak form and semi-strong form of 
EMT are taken into consideration.

Among the three forms of efficiency, it is the 
weak form that is verifiable from the dataset, and I 
focused on this aspect of the theory.  An analysis 
for past prices to predict future prices is believed 
to be useless because any information from the said 
analysis would already have been included in its 
current price (Malkiel, 1999, p. 242).  Furthermore, 
if information flows freely, then the changes in 
tomorrow’s prices will reflect tomorrow’s news only, 
which makes it independent from the price change 
today (Malkiel, 1999, p. 243).  Hence, the changes 
in the prices behave like a random walk since the 
future price changes are random departures from 
previous prices.

One way of checking out the dependence structure 
of the process is by looking at the empirical values 
of its Hurst index.  The Hurst index H of a process 
indicates the type of memory that is embedded in 
the dataset.  It takes values on the interval (0, 1) and 
a value of  H < 0.5 indicates that the process has a 
short memory (mean reverting), while H < 0.5 means 
the process has no memory (random walk).  When H 
< 0.5, the process has long-memory (persistence or 
correlation).  It can be interpreted that the value of  H 
is the probability that the next outcome is similar to 
the present outcome although this value may change 
as the process progresses (Cunningham, 2001, p. 36).  

De Vera and Gabriel (2016, p. 11) have shown that 
the Hurst index of the dataset of returns from March 1, 
1990, to October 28, 2016, were 0.546190, 0.522836, 
and 0.582895 which were obtained using the Rescaled 
Range Analysis, Modified Rescaled Range Analysis, 
and the Detrended Fluctuation Analysis, respectively.  
By definition, these values indicate the presence of 
long-memory in the process although these are still 
close to the value of 0.5 and these values do not indicate 
strong persistence.  At a value of 0.5, the process has 
no memory, which means that its future cannot be 
predicted by the past and, in the stock market, this 
would mean that the short-term changes cannot be 
predicted (Malkiel, 1999, p. 24).

Discrete-Time Markov Chains
Another way of checking trends in the stock market 

index is by building Markov chains (Doubleday & 

Esunge, 2011).  Formally, a discrete-time Markov chain 
over a countable state space (Ross, 1996, p. 163) can 
be defined as:

A stochastic process   A stochastic process {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0,1,2, … } on a countable set 𝑆𝑆 is a Markov Chain if, for 

any 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 and 𝑛𝑛 ≥ 0,  

                    𝑃𝑃{𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖, 𝑋𝑋𝑛𝑛−1 = 𝑖𝑖𝑛𝑛−1, … , 𝑋𝑋1 = 𝑖𝑖1, 𝑋𝑋0 = 𝑖𝑖0} = 𝑝𝑝𝑖𝑖𝑖𝑖,                         (4)  

for all states 𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1, 𝑖𝑖, 𝑗𝑗  and all 𝑛𝑛 ≥ 0. 

Equation (4) shows that in a Markov chain the future state 𝑋𝑋𝑛𝑛+1 depends only on the 

present state 𝑋𝑋𝑛𝑛, given knowledge of the past states 𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1, and the present 

state 𝑋𝑋𝑛𝑛.  The transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the Markov chain jumps 

from state 𝑖𝑖 to state 𝑗𝑗 and these satisfy the following conditions: 

                             𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ≥ 0;      ∑𝑝𝑝𝑖𝑖𝑖𝑖 = 1,
∞

𝑖𝑖=0
       𝑖𝑖 = 0,1, ….                                 (5)  

Let 𝐏𝐏 denote the matrix containing the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 to have  

                                              𝐏𝐏 =

[
 
 
 
 
𝑝𝑝00 𝑝𝑝01 𝑝𝑝02 …
𝑝𝑝10 𝑝𝑝11 𝑝𝑝12 …
⋮

𝑝𝑝𝑖𝑖0 𝑝𝑝𝑖𝑖1 𝑝𝑝𝑖𝑖2 …
⋮ ⋮ ⋮ ]

 
 
 
 
.                                                          (6)  

The Markov chain can be set up based on the basic movements of the daily 

returns which are negative, unchanged, and positive, denoted by N, 0, and P, 

respectively.  In determining the transition probability matrix for the dataset, I count the 

number of the following transitions: NN, N0, NP, 0N, 00, 0P, PN, P0, and PP.  A 

transition denoted by, say, NP, denotes a change from a negative to a positive return 

from one trading day to the next.  Let 𝑛𝑛𝑖𝑖𝑖𝑖 denote the number of transitions from 𝑖𝑖 to 𝑗𝑗, 

where 𝑖𝑖, 𝑗𝑗 ∈ {N, 0, P}.  To obtain the transition probability 𝑝𝑝𝑖𝑖𝑖𝑖, take the following ratio: 

                                                                  𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆
.                                                             (7)  

The transition probability matrix for this Markov chain is given by 

on a 
countable set S is a Markov Chain if, for any i and 

  A stochastic process {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0,1,2, … } on a countable set 𝑆𝑆 is a Markov Chain if, for 

any 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 and 𝑛𝑛 ≥ 0,  

                    𝑃𝑃{𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖, 𝑋𝑋𝑛𝑛−1 = 𝑖𝑖𝑛𝑛−1, … , 𝑋𝑋1 = 𝑖𝑖1, 𝑋𝑋0 = 𝑖𝑖0} = 𝑝𝑝𝑖𝑖𝑖𝑖,                         (4)  

for all states 𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1, 𝑖𝑖, 𝑗𝑗  and all 𝑛𝑛 ≥ 0. 

Equation (4) shows that in a Markov chain the future state 𝑋𝑋𝑛𝑛+1 depends only on the 

present state 𝑋𝑋𝑛𝑛, given knowledge of the past states 𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1, and the present 

state 𝑋𝑋𝑛𝑛.  The transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the Markov chain jumps 

from state 𝑖𝑖 to state 𝑗𝑗 and these satisfy the following conditions: 

                             𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ≥ 0;      ∑𝑝𝑝𝑖𝑖𝑖𝑖 = 1,
∞

𝑖𝑖=0
       𝑖𝑖 = 0,1, ….                                 (5)  

Let 𝐏𝐏 denote the matrix containing the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 to have  

                                              𝐏𝐏 =

[
 
 
 
 
𝑝𝑝00 𝑝𝑝01 𝑝𝑝02 …
𝑝𝑝10 𝑝𝑝11 𝑝𝑝12 …
⋮

𝑝𝑝𝑖𝑖0 𝑝𝑝𝑖𝑖1 𝑝𝑝𝑖𝑖2 …
⋮ ⋮ ⋮ ]

 
 
 
 
.                                                          (6)  

The Markov chain can be set up based on the basic movements of the daily 

returns which are negative, unchanged, and positive, denoted by N, 0, and P, 

respectively.  In determining the transition probability matrix for the dataset, I count the 

number of the following transitions: NN, N0, NP, 0N, 00, 0P, PN, P0, and PP.  A 

transition denoted by, say, NP, denotes a change from a negative to a positive return 

from one trading day to the next.  Let 𝑛𝑛𝑖𝑖𝑖𝑖 denote the number of transitions from 𝑖𝑖 to 𝑗𝑗, 

where 𝑖𝑖, 𝑗𝑗 ∈ {N, 0, P}.  To obtain the transition probability 𝑝𝑝𝑖𝑖𝑖𝑖, take the following ratio: 

                                                                  𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆
.                                                             (7)  

The transition probability matrix for this Markov chain is given by 

, 

      

  A stochastic process {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0,1,2, … } on a countable set 𝑆𝑆 is a Markov Chain if, for 

any 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 and 𝑛𝑛 ≥ 0,  

                    𝑃𝑃{𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖, 𝑋𝑋𝑛𝑛−1 = 𝑖𝑖𝑛𝑛−1, … , 𝑋𝑋1 = 𝑖𝑖1, 𝑋𝑋0 = 𝑖𝑖0} = 𝑝𝑝𝑖𝑖𝑖𝑖,                         (4)  

for all states 𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1, 𝑖𝑖, 𝑗𝑗  and all 𝑛𝑛 ≥ 0. 

Equation (4) shows that in a Markov chain the future state 𝑋𝑋𝑛𝑛+1 depends only on the 

present state 𝑋𝑋𝑛𝑛, given knowledge of the past states 𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1, and the present 

state 𝑋𝑋𝑛𝑛.  The transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the Markov chain jumps 

from state 𝑖𝑖 to state 𝑗𝑗 and these satisfy the following conditions: 

                             𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ≥ 0;      ∑𝑝𝑝𝑖𝑖𝑖𝑖 = 1,
∞

𝑖𝑖=0
       𝑖𝑖 = 0,1, ….                                 (5)  

Let 𝐏𝐏 denote the matrix containing the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 to have  

                                              𝐏𝐏 =

[
 
 
 
 
𝑝𝑝00 𝑝𝑝01 𝑝𝑝02 …
𝑝𝑝10 𝑝𝑝11 𝑝𝑝12 …
⋮

𝑝𝑝𝑖𝑖0 𝑝𝑝𝑖𝑖1 𝑝𝑝𝑖𝑖2 …
⋮ ⋮ ⋮ ]

 
 
 
 
.                                                          (6)  

The Markov chain can be set up based on the basic movements of the daily 

returns which are negative, unchanged, and positive, denoted by N, 0, and P, 

respectively.  In determining the transition probability matrix for the dataset, I count the 

number of the following transitions: NN, N0, NP, 0N, 00, 0P, PN, P0, and PP.  A 

transition denoted by, say, NP, denotes a change from a negative to a positive return 

from one trading day to the next.  Let 𝑛𝑛𝑖𝑖𝑖𝑖 denote the number of transitions from 𝑖𝑖 to 𝑗𝑗, 

where 𝑖𝑖, 𝑗𝑗 ∈ {N, 0, P}.  To obtain the transition probability 𝑝𝑝𝑖𝑖𝑖𝑖, take the following ratio: 

                                                                  𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆
.                                                             (7)  

The transition probability matrix for this Markov chain is given by 

 (4)
           

  A stochastic process {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0,1,2, … } on a countable set 𝑆𝑆 is a Markov Chain if, for 

any 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 and 𝑛𝑛 ≥ 0,  

                    𝑃𝑃{𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖, 𝑋𝑋𝑛𝑛−1 = 𝑖𝑖𝑛𝑛−1, … , 𝑋𝑋1 = 𝑖𝑖1, 𝑋𝑋0 = 𝑖𝑖0} = 𝑝𝑝𝑖𝑖𝑖𝑖,                         (4)  

for all states 𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1, 𝑖𝑖, 𝑗𝑗  and all 𝑛𝑛 ≥ 0. 

Equation (4) shows that in a Markov chain the future state 𝑋𝑋𝑛𝑛+1 depends only on the 

present state 𝑋𝑋𝑛𝑛, given knowledge of the past states 𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1, and the present 

state 𝑋𝑋𝑛𝑛.  The transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the Markov chain jumps 

from state 𝑖𝑖 to state 𝑗𝑗 and these satisfy the following conditions: 

                             𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ≥ 0;      ∑𝑝𝑝𝑖𝑖𝑖𝑖 = 1,
∞

𝑖𝑖=0
       𝑖𝑖 = 0,1, ….                                 (5)  

Let 𝐏𝐏 denote the matrix containing the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 to have  

                                              𝐏𝐏 =

[
 
 
 
 
𝑝𝑝00 𝑝𝑝01 𝑝𝑝02 …
𝑝𝑝10 𝑝𝑝11 𝑝𝑝12 …
⋮

𝑝𝑝𝑖𝑖0 𝑝𝑝𝑖𝑖1 𝑝𝑝𝑖𝑖2 …
⋮ ⋮ ⋮ ]

 
 
 
 
.                                                          (6)  

The Markov chain can be set up based on the basic movements of the daily 

returns which are negative, unchanged, and positive, denoted by N, 0, and P, 

respectively.  In determining the transition probability matrix for the dataset, I count the 

number of the following transitions: NN, N0, NP, 0N, 00, 0P, PN, P0, and PP.  A 

transition denoted by, say, NP, denotes a change from a negative to a positive return 

from one trading day to the next.  Let 𝑛𝑛𝑖𝑖𝑖𝑖 denote the number of transitions from 𝑖𝑖 to 𝑗𝑗, 

where 𝑖𝑖, 𝑗𝑗 ∈ {N, 0, P}.  To obtain the transition probability 𝑝𝑝𝑖𝑖𝑖𝑖, take the following ratio: 

                                                                  𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆
.                                                             (7)  

The transition probability matrix for this Markov chain is given by 

for all states 

  A stochastic process {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0,1,2, … } on a countable set 𝑆𝑆 is a Markov Chain if, for 

any 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 and 𝑛𝑛 ≥ 0,  

                    𝑃𝑃{𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖, 𝑋𝑋𝑛𝑛−1 = 𝑖𝑖𝑛𝑛−1, … , 𝑋𝑋1 = 𝑖𝑖1, 𝑋𝑋0 = 𝑖𝑖0} = 𝑝𝑝𝑖𝑖𝑖𝑖,                         (4)  

for all states 𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1, 𝑖𝑖, 𝑗𝑗  and all 𝑛𝑛 ≥ 0. 

Equation (4) shows that in a Markov chain the future state 𝑋𝑋𝑛𝑛+1 depends only on the 

present state 𝑋𝑋𝑛𝑛, given knowledge of the past states 𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1, and the present 

state 𝑋𝑋𝑛𝑛.  The transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the Markov chain jumps 

from state 𝑖𝑖 to state 𝑗𝑗 and these satisfy the following conditions: 

                             𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ≥ 0;      ∑𝑝𝑝𝑖𝑖𝑖𝑖 = 1,
∞

𝑖𝑖=0
       𝑖𝑖 = 0,1, ….                                 (5)  

Let 𝐏𝐏 denote the matrix containing the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 to have  

                                              𝐏𝐏 =

[
 
 
 
 
𝑝𝑝00 𝑝𝑝01 𝑝𝑝02 …
𝑝𝑝10 𝑝𝑝11 𝑝𝑝12 …
⋮

𝑝𝑝𝑖𝑖0 𝑝𝑝𝑖𝑖1 𝑝𝑝𝑖𝑖2 …
⋮ ⋮ ⋮ ]

 
 
 
 
.                                                          (6)  

The Markov chain can be set up based on the basic movements of the daily 

returns which are negative, unchanged, and positive, denoted by N, 0, and P, 

respectively.  In determining the transition probability matrix for the dataset, I count the 

number of the following transitions: NN, N0, NP, 0N, 00, 0P, PN, P0, and PP.  A 

transition denoted by, say, NP, denotes a change from a negative to a positive return 

from one trading day to the next.  Let 𝑛𝑛𝑖𝑖𝑖𝑖 denote the number of transitions from 𝑖𝑖 to 𝑗𝑗, 

where 𝑖𝑖, 𝑗𝑗 ∈ {N, 0, P}.  To obtain the transition probability 𝑝𝑝𝑖𝑖𝑖𝑖, take the following ratio: 

                                                                  𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆
.                                                             (7)  

The transition probability matrix for this Markov chain is given by 

 and all n > 0.
Equation (4) shows that in a Markov chain the 

future state Xn+1 depends only on the present state Xn, 
given knowledge of the past states X0, X1, ..., Xn-1, and 
the present state Xn.  The transition probability pij is 
the probability that the Markov chain jumps from state 
i to state j and these satisfy the following conditions:

  A stochastic process {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0,1,2, … } on a countable set 𝑆𝑆 is a Markov Chain if, for 

any 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 and 𝑛𝑛 ≥ 0,  

                    𝑃𝑃{𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖, 𝑋𝑋𝑛𝑛−1 = 𝑖𝑖𝑛𝑛−1, … , 𝑋𝑋1 = 𝑖𝑖1, 𝑋𝑋0 = 𝑖𝑖0} = 𝑝𝑝𝑖𝑖𝑖𝑖,                         (4)  

for all states 𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1, 𝑖𝑖, 𝑗𝑗  and all 𝑛𝑛 ≥ 0. 

Equation (4) shows that in a Markov chain the future state 𝑋𝑋𝑛𝑛+1 depends only on the 

present state 𝑋𝑋𝑛𝑛, given knowledge of the past states 𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1, and the present 

state 𝑋𝑋𝑛𝑛.  The transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the Markov chain jumps 

from state 𝑖𝑖 to state 𝑗𝑗 and these satisfy the following conditions: 

                             𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ≥ 0;      ∑𝑝𝑝𝑖𝑖𝑖𝑖 = 1,
∞

𝑖𝑖=0
       𝑖𝑖 = 0,1, ….                                 (5)  

Let 𝐏𝐏 denote the matrix containing the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 to have  

                                              𝐏𝐏 =

[
 
 
 
 
𝑝𝑝00 𝑝𝑝01 𝑝𝑝02 …
𝑝𝑝10 𝑝𝑝11 𝑝𝑝12 …
⋮

𝑝𝑝𝑖𝑖0 𝑝𝑝𝑖𝑖1 𝑝𝑝𝑖𝑖2 …
⋮ ⋮ ⋮ ]

 
 
 
 
.                                                          (6)  

The Markov chain can be set up based on the basic movements of the daily 

returns which are negative, unchanged, and positive, denoted by N, 0, and P, 

respectively.  In determining the transition probability matrix for the dataset, I count the 

number of the following transitions: NN, N0, NP, 0N, 00, 0P, PN, P0, and PP.  A 

transition denoted by, say, NP, denotes a change from a negative to a positive return 

from one trading day to the next.  Let 𝑛𝑛𝑖𝑖𝑖𝑖 denote the number of transitions from 𝑖𝑖 to 𝑗𝑗, 

where 𝑖𝑖, 𝑗𝑗 ∈ {N, 0, P}.  To obtain the transition probability 𝑝𝑝𝑖𝑖𝑖𝑖, take the following ratio: 

                                                                  𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆
.                                                             (7)  

The transition probability matrix for this Markov chain is given by 

   (5)

Let P denote the matrix containing the transition 
probabilities pij to have 

 
 

  A stochastic process {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0,1,2, … } on a countable set 𝑆𝑆 is a Markov Chain if, for 

any 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 and 𝑛𝑛 ≥ 0,  

                    𝑃𝑃{𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖, 𝑋𝑋𝑛𝑛−1 = 𝑖𝑖𝑛𝑛−1, … , 𝑋𝑋1 = 𝑖𝑖1, 𝑋𝑋0 = 𝑖𝑖0} = 𝑝𝑝𝑖𝑖𝑖𝑖,                         (4)  

for all states 𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1, 𝑖𝑖, 𝑗𝑗  and all 𝑛𝑛 ≥ 0. 

Equation (4) shows that in a Markov chain the future state 𝑋𝑋𝑛𝑛+1 depends only on the 

present state 𝑋𝑋𝑛𝑛, given knowledge of the past states 𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1, and the present 

state 𝑋𝑋𝑛𝑛.  The transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that the Markov chain jumps 

from state 𝑖𝑖 to state 𝑗𝑗 and these satisfy the following conditions: 

                             𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ≥ 0;      ∑𝑝𝑝𝑖𝑖𝑖𝑖 = 1,
∞

𝑖𝑖=0
       𝑖𝑖 = 0,1, ….                                 (5)  

Let 𝐏𝐏 denote the matrix containing the transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖 to have  

                                              𝐏𝐏 =

[
 
 
 
 
𝑝𝑝00 𝑝𝑝01 𝑝𝑝02 …
𝑝𝑝10 𝑝𝑝11 𝑝𝑝12 …
⋮

𝑝𝑝𝑖𝑖0 𝑝𝑝𝑖𝑖1 𝑝𝑝𝑖𝑖2 …
⋮ ⋮ ⋮ ]

 
 
 
 
.                                                          (6)  

The Markov chain can be set up based on the basic movements of the daily 

returns which are negative, unchanged, and positive, denoted by N, 0, and P, 

respectively.  In determining the transition probability matrix for the dataset, I count the 

number of the following transitions: NN, N0, NP, 0N, 00, 0P, PN, P0, and PP.  A 

transition denoted by, say, NP, denotes a change from a negative to a positive return 

from one trading day to the next.  Let 𝑛𝑛𝑖𝑖𝑖𝑖 denote the number of transitions from 𝑖𝑖 to 𝑗𝑗, 

where 𝑖𝑖, 𝑗𝑗 ∈ {N, 0, P}.  To obtain the transition probability 𝑝𝑝𝑖𝑖𝑖𝑖, take the following ratio: 

                                                                  𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆
.                                                             (7)  

The transition probability matrix for this Markov chain is given by 

  (6)

The Markov chain can be set up based on the basic 
movements of the daily returns which are negative, 
unchanged, and positive, denoted by N, 0, and P, 
respectively.  In determining the transition probability 
matrix for the dataset, I count the number of the 
following transitions: NN, N0, NP, 0N, 00, 0P, PN, 
P0, and PP.  A transition denoted by, say, NP, denotes 
a change from a negative to a positive return from one 
trading day to the next.  Let nij denote the number of 
transitions from i to j, where i, j ∈ {N, 0, P}.  To obtain 
the transition probability pij, take the following ratio:
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The transition probability matrix for this Markov chain is given by 
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The transition probability matrix for this Markov 
chain is given by

 N                0                 P           

                             𝐏𝐏 =
N
0
P

[
0.556449 0.000309 0.443242

0 0 1
0.423958 0 0.576047

].                                           (8)  

 

In a day to day basis, the matrix shows that the probability of transitioning from a 

positive return to a positive return is 0.576047 while transitioning from a negative return 

to a negative return happens with probability 0.556449.  The zero entries indicate that 

transitions 0N, 00, and P0 are not found in the dataset.   

In a Markov chain, the probability of transitioning from one state to another in 𝑛𝑛 

transitions by evaluating 𝐏𝐏𝑛𝑛 (multiply the transition probability matrix 𝐏𝐏 to itself 𝑛𝑛 times) 

can also be determined.  The matrix 𝐏𝐏𝑛𝑛 contains the 𝑛𝑛-step transition probabilities 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛 =

{𝑋𝑋𝑚𝑚+𝑛𝑛 = 𝑗𝑗|𝑋𝑋𝑚𝑚 = 𝑖𝑖}  (Ross, 1996, p. 168). In some cases, the value of 𝜋𝜋𝑖𝑖 = lim
𝑛𝑛→∞

𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛  exists 

and it is positive, which gives a unique stationary distribution that represents the long-

run proportion of time that the chain is in 𝑗𝑗 (Ross, 1996, p. 177).  

The Markov chain with transition probability matrix in Equation (8) is  

                              lim
𝑛𝑛→∞

𝐏𝐏𝑛𝑛 = [
0.488607 0.000151 0.511242
0.488607 0.000151 0.511242
0.488607 0.000151 0.511242

]                                      (9)  

which indicates that, in the long-run, the probability of having a negative, zero, and 

positive return are 𝜋𝜋N = 0.488607, 𝜋𝜋0 = 0.000151, and 𝜋𝜋P = 0.511242, respectively.  In 

the dataset, a zero return was only obtained once, which is consistent with the very 

small value of 𝜋𝜋0.  If the daily returns follow a random walk, the Markov chain obtained 

would have shown a 50-50 split between being positive and negative in the long run, but 

the values obtained are also quite close. 

 (8)
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In a day to day basis, the matrix shows that the 
probability of transitioning from a positive return to 
a positive return is 0.576047 while transitioning from 
a negative return to a negative return happens with 
probability 0.556449.  The zero entries indicate that 
transitions 0N, 00, and P0 are not found in the dataset.  

In a Markov chain, the probability of transitioning 
from one state to another in  n  transitions by 
evaluating  Pn (multiply the transition probability 
matrix P to itself  n times) can also be determined.  The 
matrix Pn contains the n-step transition probabilities  
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 (9)

which indicates that, in the long-run, the probability 
of having a negative, zero, and positive return are 
pN = 0.488607, p0 = 0.0.000151, and pp = 0.511242, 
respectively.  In the dataset, a zero return was only 
obtained once, which is consistent with the very small 
value of p0 .  If the daily returns follow a random walk, 
the Markov chain obtained would have shown a 50-50 
split between being positive and negative in the long 
run, but the values obtained are also quite close.

The existence of such stationary probabilities 
happens when the Markov chain is irreducible, 
aperiodic, and positive recurrent (Ross, 1996).  A 
Markov chain is irreducible if any state can be reached 
from any other state, that is, for every pair of states 
i, j, ∈ S an n  > 0 can be found such that 

The existence of such stationary probabilities happens when the Markov chain is 

irreducible, aperiodic, and positive recurrent (Ross, 1996).  A Markov chain is 

irreducible if any state can be reached from any other state, that is, for every pair of 

states 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 an 𝑛𝑛 ≥ 0 can be found such that 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛 > 0.  It is aperiodic when all of its 

states 𝑖𝑖 ∈ 𝑆𝑆 has period one.  Let the period of the state 𝑖𝑖 be  

                              𝑑𝑑(𝑖𝑖) = gcd{𝑛𝑛|𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛 > 0 for all 𝑛𝑛 > 0},                                                         (10)  

where gcd stands for greatest common divisor.  Lastly, a Markov chain is positive 

recurrent if all of its states 𝑖𝑖 ∈ 𝑆𝑆 only needs, on average, a finite number of transitions to 

return to 𝑖𝑖 from state 𝑖𝑖. 

 

Figure 7.  The transition diagram (together with the transition probabilities) associated 
with the transition probability matrix in Equation (8) shows that all states are accessible 
from each other (𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛 > 0 for some 𝑛𝑛 > 0), that is, the Markov chain can transition to any 
state from any of the other states.   
 

Figure 7 shows that any state in the Markov chain can be reached from any other 

state which makes it irreducible.  When a chain is irreducible, all its states have the 

same period; and the states are either all transient or recurrent.  It can also be viewed 

that all the states have period one which makes the chain aperiodic; this is evident by 
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where gcd stands for greatest common divisor.  Lastly, 
a Markov chain is positive recurrent if all of its states 
i ∈ S only needs, on average, a finite number of 
transitions to return to i from state i.
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Figure 7 shows that any state in the Markov chain 
can be reached from any other state which makes 
it irreducible.  When a chain is irreducible, all its 
states have the same period; and the states are either 
all transient or recurrent.  It can also be viewed that all 
the states have period one which makes the chain 
aperiodic; this is  evident by the self-transitions 
(ppp > 0 and pNN > 0).  In an irreducible finite state 
Markov chain, all the states have to be positive 
recurrent for the process not to eventually terminate.

Let mjj be the expected number of transitions needed 
to go from state j to j.  Alternatively, mjj can also be 
viewed as the mean return time to state j (starting 
from j).  In an irreducible, aperiodic Markov chain,  

the self-transitions (𝑝𝑝PP > 0 and 𝑝𝑝NN > 0).  In an irreducible finite state Markov chain, all 

the states have to be positive recurrent for the process not to eventually terminate. 

Let 𝜇𝜇𝑗𝑗𝑗𝑗 be the expected number of transitions needed to go from state 𝑗𝑗 to 𝑗𝑗.  

Alternatively, 𝜇𝜇𝑗𝑗𝑗𝑗 can also be viewed as the mean return time to state 𝑗𝑗 (starting from 𝑗𝑗).  

In an irreducible, aperiodic Markov chain, lim
𝑛𝑛→∞

𝑝𝑝𝑖𝑖𝑗𝑗
𝑛𝑛 = 1 𝜇𝜇𝑗𝑗𝑗𝑗⁄  (Ross, 1996).  In relation to 

the Markov chain under discussion, I applied this to the results in Equation (9) and 

obtained 𝜇𝜇NN = 1 0.488607⁄ = 2.046634, 𝜇𝜇00 = 1 0.000151⁄ = 6616.769, and 𝜇𝜇PP =

1 0.511242⁄ = 1.956021.  The mean return time for states N and P are practically the 

same which indicates that starting from a positive/negative return, the process (on 

average) returns to a positive/negative return in roughly two trading days.  The value of 

𝜇𝜇00 is quite large as a result of the very small value of  𝜋𝜋0. 

The analysis can be expanded using Markov chains by exploring more states 

such as, in this case, transitions to a burst or a bust (growth or drop by at least 3%).   

The state space is now 𝑆𝑆 = {bust, neg, 0, pos, burst}, where neg and pos denotes a 

growth or drop of less than 3%.  The transition probability matrix of the second Markov 

chain is 

bust            neg              0                pos           burst       

𝐏𝐏 =

bust
neg
0

pos
burst [

 
 
 
 0.159236 0.407643 0 0.350318 0.082803
0.030470 0.525769 0.000324 0.433063 0.010373

0 0 0 1 0
0.010494 0.416049 0 0.547839 0.025617
0.025806 0.329032 0 0.470968 0.174194]

 
 
 
 
.                   (10)  

It can be seen that from a bust, the next likely state would still be negative 

(0.407643) while a burst will most likely transition to a positive return (0.470968).  This 

shows that after a depression or elation in stock market prices the market would likely 

(Ross, 1996).  In relation to the 
Markov chain under discussion, I applied this to the 
results in Equation (9) and obtained mNN = 1/0.488607 
= 2.046634, m00 = 1/0.000151 = 6616.769, and mpp = 
1/0.511242 = 1.956021.  The mean return time for 
states N and P are practically the same which indicates 
that starting from a positive/negative return, the process 
(on average) returns to a positive/negative return in 
roughly two trading days.  The value of  is m00 quite 
large as a result of the very small value of  p0.

The analysis can be expanded using Markov 
chains by exploring more states such as, in this case, 

The existence of such stationary probabilities happens when the Markov chain is 

irreducible, aperiodic, and positive recurrent (Ross, 1996).  A Markov chain is 

irreducible if any state can be reached from any other state, that is, for every pair of 

states 𝑖𝑖, 𝑗𝑗 ∈ 𝑆𝑆 an 𝑛𝑛 ≥ 0 can be found such that 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛 > 0.  It is aperiodic when all of its 

states 𝑖𝑖 ∈ 𝑆𝑆 has period one.  Let the period of the state 𝑖𝑖 be  

                              𝑑𝑑(𝑖𝑖) = gcd{𝑛𝑛|𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛 > 0 for all 𝑛𝑛 > 0},                                                         (10)  

where gcd stands for greatest common divisor.  Lastly, a Markov chain is positive 

recurrent if all of its states 𝑖𝑖 ∈ 𝑆𝑆 only needs, on average, a finite number of transitions to 

return to 𝑖𝑖 from state 𝑖𝑖. 

 

Figure 7.  The transition diagram (together with the transition probabilities) associated 
with the transition probability matrix in Equation (8) shows that all states are accessible 
from each other (𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛 > 0 for some 𝑛𝑛 > 0), that is, the Markov chain can transition to any 
state from any of the other states.   
 

Figure 7 shows that any state in the Markov chain can be reached from any other 

state which makes it irreducible.  When a chain is irreducible, all its states have the 

same period; and the states are either all transient or recurrent.  It can also be viewed 

that all the states have period one which makes the chain aperiodic; this is evident by 
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transitions to a burst or a bust (growth or drop by at 
least 3%).   The state space is now S = {bust, neg, 0, 
pos, burst}, where neg and post denotes a growth or 
drop of less than 3%.  The transition probability matrix 
of the second Markov chain is

the self-transitions (𝑝𝑝PP > 0 and 𝑝𝑝NN > 0).  In an irreducible finite state Markov chain, all 

the states have to be positive recurrent for the process not to eventually terminate. 

Let 𝜇𝜇𝑗𝑗𝑗𝑗 be the expected number of transitions needed to go from state 𝑗𝑗 to 𝑗𝑗.  

Alternatively, 𝜇𝜇𝑗𝑗𝑗𝑗 can also be viewed as the mean return time to state 𝑗𝑗 (starting from 𝑗𝑗).  

In an irreducible, aperiodic Markov chain, lim
𝑛𝑛→∞

𝑝𝑝𝑖𝑖𝑗𝑗
𝑛𝑛 = 1 𝜇𝜇𝑗𝑗𝑗𝑗⁄  (Ross, 1996).  In relation to 

the Markov chain under discussion, I applied this to the results in Equation (9) and 

obtained 𝜇𝜇NN = 1 0.488607⁄ = 2.046634, 𝜇𝜇00 = 1 0.000151⁄ = 6616.769, and 𝜇𝜇PP =

1 0.511242⁄ = 1.956021.  The mean return time for states N and P are practically the 

same which indicates that starting from a positive/negative return, the process (on 

average) returns to a positive/negative return in roughly two trading days.  The value of 

𝜇𝜇00 is quite large as a result of the very small value of  𝜋𝜋0. 

The analysis can be expanded using Markov chains by exploring more states 

such as, in this case, transitions to a burst or a bust (growth or drop by at least 3%).   

The state space is now 𝑆𝑆 = {bust, neg, 0, pos, burst}, where neg and pos denotes a 

growth or drop of less than 3%.  The transition probability matrix of the second Markov 

chain is 

bust            neg              0                pos           burst       

𝐏𝐏 =

bust
neg
0

pos
burst [

 
 
 
 0.159236 0.407643 0 0.350318 0.082803
0.030470 0.525769 0.000324 0.433063 0.010373

0 0 0 1 0
0.010494 0.416049 0 0.547839 0.025617
0.025806 0.329032 0 0.470968 0.174194]

 
 
 
 
.                   (10)  

It can be seen that from a bust, the next likely state would still be negative 

(0.407643) while a burst will most likely transition to a positive return (0.470968).  This 

shows that after a depression or elation in stock market prices the market would likely 

 (10)

It can be seen that from a bust, the next likely state 
would still be negative (0.407643) while a burst will 
most likely transition to a positive return (0.470968).  
This shows that after a depression or elation in stock 
market prices the market would likely stay in the same 
depressed or elated state; it is also more persistent 
during a euphoric state.

This transition probability matrix also converges 
to a stationary distribution: 

stay in the same depressed or elated state; it is also more persistent during a euphoric 

state. 

This transition probability matrix also converges to a stationary distribution:  

  lim
𝑛𝑛→∞

𝐏𝐏𝑛𝑛 =

[
 
 
 
 0.023652 0.464748 0.000151 0.488099 0.023350
0.023652 0.464748 0.000151 0.488099 0.023350
0.023652 0.464748 0.000151 0.488099 0.023350
0.023652 0.464748 0.000151 0.488099 0.023350
0.023652 0.464748 0.000151 0.488099 0.023350]

 
 
 
 
.                (11)  

As shown in Equation (9), the long-run probability for 0 is 𝜋𝜋0 = 0.000151.  The long-run 

probabilities of bust and burst are 𝜋𝜋bust = 0.023652 and 𝜋𝜋burst = 0.023350, respectively.  

For negative and positive returns within 3%, the 𝜋𝜋neg = 0.464748 and 𝜋𝜋pos = 0.488099.  

In the long-run, there are slightly more positive returns than negative returns but there 

are slightly more busts than bursts.  The mean return times for the states bust and 

bursts are 𝜇𝜇bust,bust = 1/0.023652 = 42.280254 and 𝜇𝜇burst,burst = 1/0.02335 =

42.825806 trading days, respectively.  

 

Forecasting 

The time series of the daily returns can now be examined and do day ahead 

forecasting with several time domain forecasting methods.  The time series analysis for 

this section of the study was generated using the Real Statistics Resource Pack 

Software Release 5.6 (Zaiontz, 2018).  Let the value at time 𝑡𝑡 be 𝑦𝑦𝑡𝑡 and denote its 

forecasted value by �̂�𝑦𝑡𝑡.  The error term at time 𝑡𝑡 is denoted by 𝑒𝑒𝑡𝑡 = 𝑦𝑦𝑡𝑡 − �̂�𝑦𝑡𝑡.   

  

Basic Time Series Forecasting 

(11)

As shown in Equation (9), the long-run probability 
for 0 is p0 = 0.000151.  The long-run probabilities of 
bust and burst are  pbust  = 0.023652 and pburst = 0.023350, 
respectively.  For negative and positive returns within 
3%, the  pneg  = 0.464748 and ppos = 0.488099.  In the 
long-run, there are slightly more positive returns than 
negative returns but there are slightly more busts 
than bursts.  The mean return times for the states 
bust and bursts are mbust,bust = 1/0.023652 = 42.280254 
and  mburst,burst  = 1/0.02335= 42.825806 trading days, 
respectively. 

Forecasting

The time series of the daily returns can now be 
examined and do day ahead forecasting with several 
time domain forecasting methods.  The time series 
analysis for this section of the study was generated 
using the Real Statistics Resource Pack Software 
Release 5.6 (Zaiontz, 2018).  Let the value at time t 
be yt and denote its forecasted value by ŷt.  The error 
term at time t is denoted by et = yt - ŷt.  

 

Basic Time Series Forecasting
The basic methods are helpful in doing day ahead 

forecast.  The comparison of the basic forecasting 
methods is based on the values of the mean average 
error (MAE) 

The basic methods are helpful in doing day ahead forecast.  The comparison of 

the basic forecasting methods is based on the values of the mean average error (MAE) 

∑ |𝑒𝑒𝑡𝑡|/𝑁𝑁𝑁𝑁
𝑡𝑡=1  and the mean square error (MSE) ∑ (𝑒𝑒𝑡𝑡)2/𝑁𝑁𝑁𝑁

𝑡𝑡=1 , where 𝑁𝑁 is the length of the 

forecasted series. 

For the simple moving average method, take the latest 𝑛𝑛 values of the data to 

have  

                                                 �̂�𝑦𝑡𝑡 =  𝑦𝑦𝑡𝑡−1 + 𝑦𝑦𝑡𝑡−2 + ⋯ +𝑦𝑦𝑡𝑡−𝑛𝑛
𝑛𝑛 .                                                (12)  

The quantity 𝑛𝑛 is the number of lags and I generated the forecasted series for 𝑛𝑛 from 1 

to 30.  For the dataset, it was observed that the values of the MAE and MSE decrease 

as the lag 𝑛𝑛 increases.  Although small values of the MAE and MSE are preferred, bear 

in mind that having a large value of 𝑛𝑛 makes forecasted value insensitive because it 

smoothens out random variations but is slow in following the real changes as shown in 

Figure 8 (Waters, 1998, p. 168).   

 

Figure 8. The graph that the Simple Moving Average forecast for 𝑛𝑛 = 30 is not able to 
follow the fluctuations of the actual data although it has the minimum MAE and MSE of  
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, where N is the length of the 
forecasted series.

For the simple moving average method, take the 
latest n values of the data to have 
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  (12)

The quantity  is the number of lags and I generated 
the forecasted series for  from 1 to 30.  For the dataset, 
it was observed that the values of the MAE and MSE 
decrease as the lag  increases.  Although small values 
of the MAE and MSE are preferred, bear in mind 
that having a large value of  makes forecasted value 
insensitive because it smoothens out random variations 
but is slow in following the real changes as shown in 
Figure 8 (Waters, 1998, p. 168).  

Note that as  increases, the length of the forecasted 
time series decreases so the decrease in the values of 
the MSE and MAE as the lag increases may be partly 
attributed to the shorter length.  To make the values of 
the MSE and MAE for simple moving average models 
comparable, I compared only the values of the MSE 
and MAE from the 31st value.  In doing so, the pattern 
persisted.  

Although the simple moving average cannot 
capture the random noise in the data, it was still 
useful in forecasting the direction of the change in 
the data.  Being able to predict the signs accurately 
is useful with the dataset.  A moving average model 
may not be able to identify the amount of increase or 
decrease adequately but it can identify the signs of the 
time series accurately, which is useful in predicting 
whether an increase or decrease is coming.  Pesaran and 
Timmermann (2004) made a study on the usefulness 
of such information in economics and financial data.  

I applied the Pesaran-Timmermann test to find 
out if the model is adequate in predicting the change 
in the direction of the time series. This test indicates 
whether the model can predict the signs accurately and 
it is not applicable when all the signs of the values in 
the time series are the same (Zaiontz, 2018, Pesaran-
Timmermann, 2004).  The test was applied to all 
the simple moving average models with n < 30, and 
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every model indicated that at the significance level of 
a = 0.05, the null hypothesis that the model does not 
forecast the sign of the data is rejected.  This means 
that the model can adequately predict the signs of the 
values in the time series.  In fact, the largest p-value 
obtained when the test was applied to all the simple 
moving average models is 0.003652. 

A simple average model with lag n assumes that 
the past  values have the same contribution to the 
forecasted value but that assumption can be relaxed 
and go with a weighted moving average given by

 A simple average model with lag 𝑛𝑛 assumes that the past 𝑛𝑛 values have the 

same contribution to the forecasted value but that assumption can be relaxed and go 

with a weighted moving average given by 

                                         �̂�𝑦𝑡𝑡 = 𝑤𝑤1𝑦𝑦𝑡𝑡−1 + 𝑤𝑤2𝑦𝑦𝑡𝑡−2 + ⋯ + 𝑤𝑤𝑛𝑛𝑦𝑦𝑡𝑡−𝑛𝑛,                                         (13)  

where 𝑤𝑤𝑖𝑖 denotes the weight of the value 𝑖𝑖 units away from the forecasted value and 

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 1.  Starting from a lag of 𝑛𝑛 = 2, I searched for the first value of the lag 𝑛𝑛 that 

gives MAE and MSE values that are smaller than the values generated from any of the 

generated simple moving average models.  The first value of 𝑛𝑛 that satisfies the 

conditions is 𝑛𝑛 = 15.  In this model, the MAE is 0.010396 while the MSE is 0.000221 

and these were taken from the 16th value onwards; and these values are still smaller 

than simple moving average models where the MAE and MSE were taken from the 31st 

value onwards. 

 
Figure 9. The weighted moving average with 𝑛𝑛 = 15 gave values of the MAE and MSE 
that are smaller than those values from the simple moving average models.  It can be 
seen that its fluctuations in the forecasted model are more in tune with the dataset.  
 

 (13)

where wi denotes the weight of the value i units away 
from the forecasted value and 
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Figure 9. The weighted moving average with 𝑛𝑛 = 15 gave values of the MAE and MSE 
that are smaller than those values from the simple moving average models.  It can be 
seen that its fluctuations in the forecasted model are more in tune with the dataset.  
 

  Starting 
from a lag of n = 2, I searched for the first value of the 
lag n that gives MAE and MSE values that are smaller 
than the values generated from any of the generated 
simple moving average models.  The first value of n 
that satisfies the conditions is n = 15.  In this model, 
the MAE is 0.010396 while the MSE is 0.000221 and 
these were taken from the 16th value onwards; and these 

values are still smaller than simple moving average 
models where the MAE and MSE were taken from the 
31st value onwards.

In Figure 9, the fluctuation of the dataset is better 
captured by a weighted moving average model.  This 
weighted moving average model with n = 15 has 
equation 

 In Figure 9, the fluctuation of the dataset is better captured by a weighted moving 

average model.  This weighted moving average model with 𝑛𝑛 = 15 has equation  

        

�̂�𝑦𝑡𝑡 = 0.204346𝑦𝑦𝑡𝑡−1 + 0.031473𝑦𝑦𝑡𝑡−2 + 0.049132𝑦𝑦𝑡𝑡−3
       + 0.076488𝑦𝑦𝑡𝑡−4 +  0.033993𝑦𝑦𝑡𝑡−5  +  0.038136𝑦𝑦𝑡𝑡−6

     + 0.054568𝑦𝑦𝑡𝑡−7 + 0.075267𝑦𝑦𝑡𝑡−8 +  0.062403𝑦𝑦𝑡𝑡−9
           + 0.044207𝑦𝑦𝑡𝑡−10 +  0.054251𝑦𝑦𝑡𝑡−11 + 0.085812𝑦𝑦𝑡𝑡−12
          + 0.079880𝑦𝑦𝑡𝑡−13 + 0.034844𝑦𝑦𝑡𝑡−14 + 0.075200𝑦𝑦𝑡𝑡−15.

                                 (14)  

For all the weighted moving average models generated (2 ≤ 𝑛𝑛 ≤ 15), the value 

just before the forecasted value has always obtained the largest weight but it is not 

evident that the weight decreases the further the past value is from the forecasted 

value.  I also performed the Pesaran-Timmermann test on these models and at a 

significance level of 𝛼𝛼 = 0.05 I got the same result as the simple moving average 

models; in this case the 𝑝𝑝-values have been rounded off to zero. 

 Another way of relaxing the assumption of having the past 𝑛𝑛 values the same 

weight is by employing a simple exponential smoothing.  A simple exponential model is 

defined as  

                                      �̂�𝑦1 = 𝑦𝑦1                    �̂�𝑦𝑡𝑡+1 = 𝑎𝑎𝑦𝑦𝑡𝑡 + (1 − 𝑎𝑎)�̂�𝑦𝑡𝑡,                                     (15)  

where 𝑡𝑡 ≥ 1 and 𝑎𝑎 ∈ (0,1) are referred to as the smoothing constant.  The �̂�𝑦𝑡𝑡+1 can be 

rewritten in terms of the values in the given time series only as: 

�̂�𝑦𝑡𝑡+1 =  𝑎𝑎𝑦𝑦𝑡𝑡 + (1 − 𝑎𝑎)𝑦𝑦𝑡𝑡−1 + (1 − 𝑎𝑎)2𝑦𝑦𝑡𝑡−2 + ⋯ + (1 − 𝑎𝑎)𝑡𝑡−2𝑦𝑦2 + (1 − 𝑎𝑎)𝑡𝑡−1𝑦𝑦1.      (16)  

 When applied to the dataset, the simple exponential smoothing gave the model 

�̂�𝑦𝑡𝑡 = 0.001737𝑦𝑦𝑡𝑡 + 0.998263�̂�𝑦𝑡𝑡 that gave the smallest MSE of 0.000218 while the simple 

exponential model that gave the smallest MAE of 0.010238 is �̂�𝑦𝑡𝑡 = 0.002810𝑦𝑦𝑡𝑡 +

0.997190�̂�𝑦𝑡𝑡.  Although these models gave the smallest MAE and MSE so far, these 

models were not able to follow the fluctuations of the dataset.  The model has 

 (14)

For all the weighted moving average models 
generated (2 < n < 15), the value just before the 
forecasted value has always obtained the largest weight 
but it is not evident that the weight decreases the 
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the past n values the same weight is by employing a 

The basic methods are helpful in doing day ahead forecast.  The comparison of 

the basic forecasting methods is based on the values of the mean average error (MAE) 

∑ |𝑒𝑒𝑡𝑡|/𝑁𝑁𝑁𝑁
𝑡𝑡=1  and the mean square error (MSE) ∑ (𝑒𝑒𝑡𝑡)2/𝑁𝑁𝑁𝑁

𝑡𝑡=1 , where 𝑁𝑁 is the length of the 

forecasted series. 

For the simple moving average method, take the latest 𝑛𝑛 values of the data to 

have  

                                                 �̂�𝑦𝑡𝑡 =  𝑦𝑦𝑡𝑡−1 + 𝑦𝑦𝑡𝑡−2 + ⋯ +𝑦𝑦𝑡𝑡−𝑛𝑛
𝑛𝑛 .                                                (12)  

The quantity 𝑛𝑛 is the number of lags and I generated the forecasted series for 𝑛𝑛 from 1 

to 30.  For the dataset, it was observed that the values of the MAE and MSE decrease 

as the lag 𝑛𝑛 increases.  Although small values of the MAE and MSE are preferred, bear 

in mind that having a large value of 𝑛𝑛 makes forecasted value insensitive because it 

smoothens out random variations but is slow in following the real changes as shown in 

Figure 8 (Waters, 1998, p. 168).   

 

Figure 8. The graph that the Simple Moving Average forecast for 𝑛𝑛 = 30 is not able to 
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simple exponential smoothing.  A simple exponential 
model is defined as 

 In Figure 9, the fluctuation of the dataset is better captured by a weighted moving 

average model.  This weighted moving average model with 𝑛𝑛 = 15 has equation  

        

�̂�𝑦𝑡𝑡 = 0.204346𝑦𝑦𝑡𝑡−1 + 0.031473𝑦𝑦𝑡𝑡−2 + 0.049132𝑦𝑦𝑡𝑡−3
       + 0.076488𝑦𝑦𝑡𝑡−4 +  0.033993𝑦𝑦𝑡𝑡−5  +  0.038136𝑦𝑦𝑡𝑡−6

     + 0.054568𝑦𝑦𝑡𝑡−7 + 0.075267𝑦𝑦𝑡𝑡−8 +  0.062403𝑦𝑦𝑡𝑡−9
           + 0.044207𝑦𝑦𝑡𝑡−10 +  0.054251𝑦𝑦𝑡𝑡−11 + 0.085812𝑦𝑦𝑡𝑡−12
          + 0.079880𝑦𝑦𝑡𝑡−13 + 0.034844𝑦𝑦𝑡𝑡−14 + 0.075200𝑦𝑦𝑡𝑡−15.

                                 (14)  

For all the weighted moving average models generated (2 ≤ 𝑛𝑛 ≤ 15), the value 

just before the forecasted value has always obtained the largest weight but it is not 

evident that the weight decreases the further the past value is from the forecasted 

value.  I also performed the Pesaran-Timmermann test on these models and at a 

significance level of 𝛼𝛼 = 0.05 I got the same result as the simple moving average 

models; in this case the 𝑝𝑝-values have been rounded off to zero. 

 Another way of relaxing the assumption of having the past 𝑛𝑛 values the same 

weight is by employing a simple exponential smoothing.  A simple exponential model is 

defined as  

                                      �̂�𝑦1 = 𝑦𝑦1                    �̂�𝑦𝑡𝑡+1 = 𝑎𝑎𝑦𝑦𝑡𝑡 + (1 − 𝑎𝑎)�̂�𝑦𝑡𝑡,                                     (15)  

where 𝑡𝑡 ≥ 1 and 𝑎𝑎 ∈ (0,1) are referred to as the smoothing constant.  The �̂�𝑦𝑡𝑡+1 can be 

rewritten in terms of the values in the given time series only as: 

�̂�𝑦𝑡𝑡+1 =  𝑎𝑎𝑦𝑦𝑡𝑡 + (1 − 𝑎𝑎)𝑦𝑦𝑡𝑡−1 + (1 − 𝑎𝑎)2𝑦𝑦𝑡𝑡−2 + ⋯ + (1 − 𝑎𝑎)𝑡𝑡−2𝑦𝑦2 + (1 − 𝑎𝑎)𝑡𝑡−1𝑦𝑦1.      (16)  

 When applied to the dataset, the simple exponential smoothing gave the model 

�̂�𝑦𝑡𝑡 = 0.001737𝑦𝑦𝑡𝑡 + 0.998263�̂�𝑦𝑡𝑡 that gave the smallest MSE of 0.000218 while the simple 

exponential model that gave the smallest MAE of 0.010238 is �̂�𝑦𝑡𝑡 = 0.002810𝑦𝑦𝑡𝑡 +

0.997190�̂�𝑦𝑡𝑡.  Although these models gave the smallest MAE and MSE so far, these 

models were not able to follow the fluctuations of the dataset.  The model has 
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When applied to the dataset, the simple exponential 
smoothing gave the model  ŷt = 0.001737yt + 0.998263ŷt 
that gave the smallest MSE of 0.000218 while the 
simple exponential model that gave the smallest MAE 
of 0.010238 is ŷt = 0.0002180yt + 0.997190ŷt.  Although 
these models gave the smallest MAE and MSE so far, 
these models were not able to follow the fluctuations 
of the dataset.  The model has essentially tuned out the 
random noise in the stock market.  When the Pesaran-
Timmermann test was applied to both models and at 
a significance level of a = 0.05, the null hypothesis 
is rejected.  These models can predict the sign on the 
time series accurately.

Among the basic forecasting method applied to the 
dataset, it is the weighted moving average with a lag 
of 15 that has the right balance between a small MAE 
and MSE and in capturing the inherent fluctuations in 
the dataset.

Autoregressive Moving Average (ARMA) Processes
Before discussing with ARMA processes, I 

considered autoregressive (AR) and moving average 
(MA) processes and looked at the autocorrelations 
and partial autocorrelations of the data to determine 
the appropriate order p and q of an AR(p) and MA (q)
processes, respectively.  An AR(p) process is like the 
WMA model in the sense that a linear function of the 
past p values is used to predict the next value with no 
restriction on the sum of the coefficients of the past 
values, that is, 

essentially tuned out the random noise in the stock market.  When the Pesaran-

Timmermann test was applied to both models and at a significance level of 𝛼𝛼 = 0.05, 

the null hypothesis is rejected.  These models can predict the sign on the time series 

accurately. 

 Among the basic forecasting method applied to the dataset, it is the weighted 

moving average with a lag of 15 that has the right balance between a small MAE and 

MSE and in capturing the inherent fluctuations in the dataset. 

 

Autoregressive Moving Average (ARMA) Processes 

 Before discussing with ARMA processes, I considered autoregressive (AR) and 

moving average (MA) processes and looked at the autocorrelations and partial 

autocorrelations of the data to determine the appropriate order 𝑝𝑝 and 𝑞𝑞 of an AR(𝑝𝑝) and 

MA(𝑞𝑞) processes, respectively.  An AR(𝑝𝑝) process is like the WMA model in the sense 

that a linear function of the past 𝑝𝑝 values is used to predict the next value with no 

restriction on the sum of the coefficients of the past values, that is,  

                    𝑦𝑦𝑡𝑡 = 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑡𝑡−1 + 𝜙𝜙2𝑦𝑦𝑡𝑡−2 + ⋯ + 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡,                                             (17)  

where 𝜙𝜙0 is a constant and the error terms 𝜀𝜀𝑡𝑡s are independent and identically 

distributed (Zaiontz, 2018). The error terms are normally distributed with mean zero and 

variance 𝜎𝜎2, that is, 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2).  On the other hand, an MA(𝑞𝑞) process utilizes a linear 

function of past errors to predict the next value,  

                    𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝜀𝜀𝑖𝑖 +  𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞,                                                (18)  

where 𝜇𝜇 is the mean of the process and 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2) are independent (Zaiontz, 2018).   

 (17)
where f0 is a constant and the error terms ets are 
independent and identically distributed (Zaiontz, 
2018). The error terms are normally distributed with 
mean zero and variance s2, that is, et ~ N (0, s2 ).  On 
the other hand, an MA (q) process utilizes a linear 
function of past errors to predict the next value, 

Figure 9. The weighted moving average with n = 15 gave values of the MAE and MSE that are smaller than those values 
from the simple moving average models.  It can be seen that its fluctuations in the forecasted model are more in tune with 

the dataset. 

 A simple average model with lag 𝑛𝑛 assumes that the past 𝑛𝑛 values have the 

same contribution to the forecasted value but that assumption can be relaxed and go 

with a weighted moving average given by 

                                         �̂�𝑦𝑡𝑡 = 𝑤𝑤1𝑦𝑦𝑡𝑡−1 + 𝑤𝑤2𝑦𝑦𝑡𝑡−2 + ⋯ + 𝑤𝑤𝑛𝑛𝑦𝑦𝑡𝑡−𝑛𝑛,                                         (13)  

where 𝑤𝑤𝑖𝑖 denotes the weight of the value 𝑖𝑖 units away from the forecasted value and 

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 1.  Starting from a lag of 𝑛𝑛 = 2, I searched for the first value of the lag 𝑛𝑛 that 

gives MAE and MSE values that are smaller than the values generated from any of the 

generated simple moving average models.  The first value of 𝑛𝑛 that satisfies the 

conditions is 𝑛𝑛 = 15.  In this model, the MAE is 0.010396 while the MSE is 0.000221 

and these were taken from the 16th value onwards; and these values are still smaller 

than simple moving average models where the MAE and MSE were taken from the 31st 

value onwards. 

 
Figure 9. The weighted moving average with 𝑛𝑛 = 15 gave values of the MAE and MSE 
that are smaller than those values from the simple moving average models.  It can be 
seen that its fluctuations in the forecasted model are more in tune with the dataset.  
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essentially tuned out the random noise in the stock market.  When the Pesaran-

Timmermann test was applied to both models and at a significance level of 𝛼𝛼 = 0.05, 

the null hypothesis is rejected.  These models can predict the sign on the time series 

accurately. 

 Among the basic forecasting method applied to the dataset, it is the weighted 

moving average with a lag of 15 that has the right balance between a small MAE and 

MSE and in capturing the inherent fluctuations in the dataset. 

 

Autoregressive Moving Average (ARMA) Processes 

 Before discussing with ARMA processes, I considered autoregressive (AR) and 

moving average (MA) processes and looked at the autocorrelations and partial 

autocorrelations of the data to determine the appropriate order 𝑝𝑝 and 𝑞𝑞 of an AR(𝑝𝑝) and 

MA(𝑞𝑞) processes, respectively.  An AR(𝑝𝑝) process is like the WMA model in the sense 

that a linear function of the past 𝑝𝑝 values is used to predict the next value with no 

restriction on the sum of the coefficients of the past values, that is,  

                    𝑦𝑦𝑡𝑡 = 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑡𝑡−1 + 𝜙𝜙2𝑦𝑦𝑡𝑡−2 + ⋯ + 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡,                                             (17)  

where 𝜙𝜙0 is a constant and the error terms 𝜀𝜀𝑡𝑡s are independent and identically 

distributed (Zaiontz, 2018). The error terms are normally distributed with mean zero and 

variance 𝜎𝜎2, that is, 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2).  On the other hand, an MA(𝑞𝑞) process utilizes a linear 

function of past errors to predict the next value,  

                    𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝜀𝜀𝑖𝑖 +  𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞,                                                (18)  

where 𝜇𝜇 is the mean of the process and 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎2) are independent (Zaiontz, 2018).   
 (18)

where m is the mean of the process and et ~ N (0, s2 ) 
are independent (Zaiontz, 2018).  

The autocorrelation ACF(k) gives the degree of 
linear relationship between observations that are  
units apart while the partial correlation PACF(k) is 
the autocorrelation between observations that are 
also k units apart without taking into consideration 
the values between the observations.  The plot of the 
ACF also indicates whether the data is stationary or 
not; a stationary series shows a plot where the values 
exponentially decay.  

In Figure 10, the ACF cuts off after lag one although 
there are lags where the values are not statistically 
equal to zero at the significance level of a = 0.05.  This 
indicates that the data is most likely stationary.

I applied the Augmented Dickey-Fuller (ADF) 
test to determine whether the series is stationary or 
not.  When a series is stationary, its mean, variance, 
and covariance are constant.  The ADF test takes into 
consideration three types of time series—no constant 
and trend, with constant no trend, and with constant 
and trend.  This test takes the null hypothesis that the 
series is not stationary.  In Figures 8 and 9, the data do 
not have a trend but I still applied each type of test at 
a significance level of a = 0.05 and results all pointed 
to a stationary series.  This means that no differencing 
is necessary on the given dataset to obtain a stationary 
time series.  

The appropriate order of the fitted AR process 
can be chosen based on the PACF (Maddala, 2001) 
while using the ACF to determine the correct order 
of the fitted MA(q) process because the ACF for all 
k > q is zero.  Figure 10 shows the ACF and PACF 
plots of the data and, for both plots, the values with 
lags 1, 9, 12, and 13 indicate that the values are not 
statistically equal to zero at the significance level 
of a = 0.05.  This indicates that there is persistence 
or non-zero correlation for values that are two weeks 
apart.  Although the plot of the PACF drops after the 
first lag, I still fitted AR(p) processes where 1 < p < 13.   

The choice for the best fitted ARprocess is 
done through the Akaike information criterion 
(AIC) and Bayesian information criterion (BIC). 
I chose the process with the lowest AIC or BIC 
(Maddala, 2001, p. 527).  The AIC and BIC 
are computed as 

with the lowest AIC or BIC (Maddala, 2001, p. 527).  The AIC and BIC are computed as 

𝑁𝑁 ln[∑ (𝑦𝑦𝑡𝑡 − �̂�𝑦𝑡𝑡)2/𝑁𝑁𝑁𝑁
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is the length of the series and 𝑘𝑘 = 𝑝𝑝 + 𝑞𝑞 + 1 is the number of parameters in the model 

with no constant (Zaiontz, 2018).  Observe that the values of the AIC and BIC increases 

with the number of model parameters 𝑘𝑘 and the only way for the values of the AIC and 

BIC to decrease while 𝑘𝑘 increases are for the sum of squares error (SSE)  ∑ (𝑦𝑦𝑡𝑡 −𝑁𝑁
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�̂�𝑦𝑡𝑡)2 to substantially decrease to compensate for the increase in 𝑘𝑘.  

I started by fitting AR(𝑝𝑝) processes with constant included and observed that for 

all the processes, except for AR(6), the constant is statistically equal to zero at the 

significance level of 𝛼𝛼 = 0.05.  Comparing the AIC and BIC for the fitted AR(𝑝𝑝) 

processes with 1 ≤ 𝑝𝑝 ≤ 5 and 7 ≤ 𝑝𝑝 ≤ 13 with no constant and AR(6) with a constant, it 

was the AR(1) with no constant that gave the least values for both the AIC and BIC.  

These implies that the increase in both values with the number of parameters is more 

dominant than the change in the SSE. 

The equation of the AR(1) with no constant is 𝑦𝑦𝑡𝑡 = 0.172044𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡.  The 

parameter of this model is statistically not equal to zero at the significance level of 𝛼𝛼 =

0.05.  The Pesaran-Timmermann test also indicates that the fitted model can predict the 

signs adequately.  I applied the Ljung-Box test to the residuals 𝜀𝜀𝑡𝑡 to verify that the 

residuals are indeed random.  For this test, the null hypothesis is that the residuals are 

random.  At the significance level of 𝛼𝛼 = 0.05, the value of 𝑝𝑝-value is 0.719167 which is 

greater than 𝛼𝛼, thus the null hypothesis is accepted.  This means that the AR(1) process 

with no constant provides an adequate fit.  
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 The autocorrelation ACF(𝑘𝑘) gives the degree of linear relationship between 

observations that are 𝑘𝑘 units apart while the partial correlation PACF(𝑘𝑘) is the 

autocorrelation between observations that are also 𝑘𝑘 units apart without taking into 

consideration the values between the observations.  The plot of the ACF also indicates 

whether the data is stationary or not; a stationary series shows a plot where the values 

exponentially decay.   

 
Figure 10. In both the ACF and PACF plots, the values at lags of 1, 9, 12, and 13 are 
statistically not equal to zero at the significance level of 𝛼𝛼 = 0.05.  To identify the 
appropriate AR and MA processes for the data, AR and MA processes were generated 
from 1 to 13 and saw which performed well based on the Akaike information criterion 
(AIC) and Bayesian information criterion (BIC). 
 

In Figure 10, the ACF cuts off after lag one although there are lags where the 

values are not statistically equal to zero at the significance level of 𝛼𝛼 = 0.05.  This 

indicates that the data is most likely stationary. 

 
I applied the Augmented Dickey-Fuller (ADF) test to determine whether the 

series is stationary or not.  When a series is stationary, its mean, variance, and 

covariance are constant.  The ADF test takes into consideration three types of time 

series—no constant and trend, with constant no trend, and with constant and trend.  

This test takes the null hypothesis that the series is not stationary.  In Figures 8 and 9, 

the data do not have a trend but I still applied each type of test at a significance level of 

Figure 10. In both the ACF and PACF plots, the values at lags of 1, 9, 12, and 13 are statistically not equal to zero at the 
significance level of a = 0.05.  To identify the appropriate AR and MA processes for the data, AR and MA processes were 
generated from 1 to 13 and saw which performed well based on the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC).
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and BIC for the fitted AR processes with  and  with no 
constant and AR(6) with a constant, it was the AR(1) 
with no constant that gave the least values for both the 
AIC and BIC.  These implies that the increase in both 
values with the number of parameters is more dominant 
than the change in the SSE.

The equation of the AR(1) with no constant is 
yt = 0.172044yt-1 + et.  The parameter of this model is 
statistically not equal to zero at the significance level of 
a = 0.05.  The Pesaran-Timmermann test also indicates 
that the fitted model can predict the signs adequately.  I 
applied the Ljung-Box test to the residuals et to verify 
that the residuals are indeed random.  For this test, 
the null hypothesis is that the residuals are random.  
At the significance level of a = 0.05, the value of 
p-value is 0.719167 which is greater than a, thus the 
null hypothesis is accepted.  This means that the AR(1) 
process with no constant provides an adequate fit. 

I compared the forecasts of the fitted AR(1) process 
and the fitted weighted moving average model with 
n = 15 via the Diebold-Mariano (DM) test.  The DM 
test makes assumptions on the forecast error loss 
differential given by 

I compared the forecasts of the fitted AR(1) process and the fitted weighted 

moving average model with 𝑛𝑛 = 15 via the Diebold-Mariano (DM) test.  The DM test 

makes assumptions on the forecast error loss differential given by 𝑑𝑑12𝑡𝑡 = 𝜀𝜀1𝑡𝑡2 − 𝜀𝜀2𝑡𝑡2 , 

where 𝜀𝜀1𝑡𝑡 and 𝜀𝜀2𝑡𝑡 are the forecast error of the first and second fitted models, 

respectively, at time 𝑡𝑡 (Diebold, 2012, p. 2). 

 
Figure 12. The plots of the ACF for the loss differential of square errors and absolute 
errors show exponential decay which indicates the stationarity of the series.  To confirm 
this result, I also applied the ADF test and obtained the same result at 𝛼𝛼 = 0.05.    
 

In Zaiontz (2018), the DM test also considers the loss differential given by  𝑑𝑑12𝑡𝑡 =

|𝜀𝜀1𝑡𝑡| − |𝜀𝜀2𝑡𝑡| and the key assumption on the DM test is that 𝑑𝑑12𝑡𝑡 is stationary.  For the 

fitted models, the plots of the ACF decays exponentially for both loss differential 

functions, which indicates that both series are stationary as shown in Figure 12.  I also 

applied the ADF test to both loss differentials and both series came out stationary for all 

the types considered by the test at 𝛼𝛼 = 0.05.  When the DM test was applied at 𝛼𝛼 = 0.05 

the 𝑝𝑝-values round off to zero for both loss differentials of square errors and absolute 

errors.  This means that both models have different forecasting abilities. 

  To improve the fitted AR(1) process, I added some moving average terms to the 

model and came up with a fitted autoregressive moving average (ARMA) model; the 

general equation of an ARMA(𝑝𝑝, 𝑞𝑞) process is  

, where e1t and e2t are 
the forecast error of the first and second fitted models, 
respectively, at time t (Diebold, 2012, p. 2).

In Zaiontz (2018), the DM test also considers the 
loss differential given by d12t = |e1t| – |e2t| and the key 
assumption on the DM test is that d12t is stationary.  
For the fitted models, the plots of the ACF decays 
exponentially for both loss differential functions, which 
indicates that both series are stationary as shown in 
Figure 12.  I also applied the ADF test to both loss 
differentials and both series came out stationary for all 
the types considered by the test at a = 0.05.  When the 
DM test was applied at a = 0.05 the p-values round 
off to zero for both loss differentials of square errors 
and absolute errors.  This means that both models have 
different forecasting abilities.

  To improve the fitted AR(1) process, I added some 
moving average terms to the model and came up with a 
fitted autoregressive moving average (ARMA) model; 
the general equation of an ARMA(p, q) process is 

   𝑦𝑦𝑡𝑡 = 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑡𝑡−1 + 𝜙𝜙2𝑦𝑦𝑡𝑡−2 + ⋯ + 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + ⋯ + 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞.                (19)  

I employed the AIC and BIC in picking the best ARMA process.  The ACF plot of the 

daily returns shows that after the first lag, most values are statistically zero at the 

significance level of 𝛼𝛼 = 0.05.  I looked at ARMA(1, 𝑞𝑞) processes where 1 ≤ 𝑞𝑞 ≤ 6 and 

compare the values of the AIC and BIC.  The value of the BIC increased as the number 

of parameters decreased while the AIC is minimum at 𝑞𝑞 = 3 but the values of this model 

are all statistically equal to zero at 𝛼𝛼 = 0.05.  Because of this, I picked an ARMA(1,2) 

where all the parameters are not statistically equal to zero at 𝛼𝛼 = 0.05.  The fitted 

process is given by  

            𝑦𝑦𝑡𝑡 = −0.72242𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 + 0.901773𝜀𝜀𝑡𝑡−1 + 0.148019𝜀𝜀𝑡𝑡−2.                               (20)  

I applied the Ljung-Box test to the residuals 𝜀𝜀𝑡𝑡 to verify that the residuals are indeed 

random.  The 𝑝𝑝-value is 0.830033 so at 𝛼𝛼 = 0.05 the null hypothesis that the residuals 

are random is accepted. 

 
Figure 13. The MSE for this model also rounds off to 0.000211 which is similar to the 
MSE from the fitted AR(1) process.  When the DM test was applied, the result indicates 
the models’ forecasts accuracy are the same.   
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Figure 13. The MSE for this model also rounds off to 0.000211 which is similar to the 
MSE from the fitted AR(1) process.  When the DM test was applied, the result indicates 
the models’ forecasts accuracy are the same.   
 

I employed the AIC and BIC in picking the best 
ARMA process.  The ACF plot of the daily returns 
shows that after the first lag, most values are 
statistically zero at the significance level of a = 0.05.  
I looked at ARMA(1, q) processes where 1 < q < 6 and 

Figure 11.  The plot of the fitted AR(1) process with no constant looks similar to the fitted WMA with 15 lags although 
this process has a less number of parameters, and although more data points are included, the fitted AR(1) process has an 

MSE of 0.000212 which is lower than the MSE of 0.000221 of the fitted WMA model. 

Autoregressive Process
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compare the values of the AIC and BIC.  The value 
of the BIC increased as the number of parameters 
decreased while the AIC is minimum at q = 3 but the 
values of this model are all statistically equal to zero 
at a = 0.05.  Because of this, I picked an ARMA(1,2) 
where all the parameters are not statistically equal to 
zero at a = 0.05.  The fitted process is given by 
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Figure 13. The MSE for this model also rounds off to 0.000211 which is similar to the 
MSE from the fitted AR(1) process.  When the DM test was applied, the result indicates 
the models’ forecasts accuracy are the same.   
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Figure 13. The MSE for this model also rounds off to 0.000211 which is similar to the 
MSE from the fitted AR(1) process.  When the DM test was applied, the result indicates 
the models’ forecasts accuracy are the same.   
 

I applied the Ljung-Box test to the residuals  to verify 
that the residuals are indeed random.  The p-value is 
0.830033 so at a = 0.05 the null hypothesis that the 
residuals are random is accepted.

When the Pesaran-Timmermann test was applied, 
the result indicates that the model can predict the signs 
accurately.  The DM test was applied to AR(1) and 
AR(1,2) and the p-values obtained were all greater 
than a = 0.05 which indicate that forecasts accuracy 
of the processes is the same.   

Summary and Conclusion

The anomalies observed in other stock markets also 
exist in the local market. By having a good average 
effective rate of returns in December and January (as 
shown in Figure 3), being invested in the stock market 
only in those two months of each year maybe be a 

Figure 12. The plots of the ACF for the loss differential of square errors and absolute errors show exponential decay 
which indicates the stationarity of the series.  To confirm this result, I also applied the ADF test and obtained the same 

result at a = 0.05.   

I compared the forecasts of the fitted AR(1) process and the fitted weighted 

moving average model with 𝑛𝑛 = 15 via the Diebold-Mariano (DM) test.  The DM test 

makes assumptions on the forecast error loss differential given by 𝑑𝑑12𝑡𝑡 = 𝜀𝜀1𝑡𝑡2 − 𝜀𝜀2𝑡𝑡2 , 

where 𝜀𝜀1𝑡𝑡 and 𝜀𝜀2𝑡𝑡 are the forecast error of the first and second fitted models, 

respectively, at time 𝑡𝑡 (Diebold, 2012, p. 2). 

 
Figure 12. The plots of the ACF for the loss differential of square errors and absolute 
errors show exponential decay which indicates the stationarity of the series.  To confirm 
this result, I also applied the ADF test and obtained the same result at 𝛼𝛼 = 0.05.    
 

In Zaiontz (2018), the DM test also considers the loss differential given by  𝑑𝑑12𝑡𝑡 =

|𝜀𝜀1𝑡𝑡| − |𝜀𝜀2𝑡𝑡| and the key assumption on the DM test is that 𝑑𝑑12𝑡𝑡 is stationary.  For the 

fitted models, the plots of the ACF decays exponentially for both loss differential 

functions, which indicates that both series are stationary as shown in Figure 12.  I also 

applied the ADF test to both loss differentials and both series came out stationary for all 

the types considered by the test at 𝛼𝛼 = 0.05.  When the DM test was applied at 𝛼𝛼 = 0.05 

the 𝑝𝑝-values round off to zero for both loss differentials of square errors and absolute 

errors.  This means that both models have different forecasting abilities. 

  To improve the fitted AR(1) process, I added some moving average terms to the 

model and came up with a fitted autoregressive moving average (ARMA) model; the 

general equation of an ARMA(𝑝𝑝, 𝑞𝑞) process is  

Figure 13. The MSE for this model also rounds off to 0.000211 which is similar to the MSE from the fitted AR(1) 
process.  When the DM test was applied, the result indicates the models’ forecasts accuracy are the same.  
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profitable investing strategy.  Out of the 26 December–
January pairs, the effective rate of returns from both 
months were positive 11 times while only twice were 
the returns negative from both months.  Furthermore, 
the effective rate of return on January was greater 
than the effective rate of return on December in 16 of 
those pairs.  Figure 4 also suggests that, on average, 
the best trading day to buy is on Tuesday and to sell 
on Thursday although the differences of the averages 
in the last three trading days is quite small and an 
ANOVA supports the observation that the averages 
are equal.  There seems to be a difference between the 
averages of the first two days of the week but it is not 
statistically significant as shown by a two-sample t-test 
for equal means.    

The Markov chain with states negative, unchanged, 
and positive showed that, in the long run, 51.1242% 
of the time the returns are positive and 48.8607% of 
the time the returns are negative.  The probability of 
transitioning from a positive return to a positive return 
is 0.576047 while transitioning from a negative return 
to a negative return has a probability of 0.556449.  
These transition probabilities are quite close to the 
empirical values of the Hurst index which varied from 
0.522836 to 0.582895 and, as mentioned earlier, these 
values indicate the probability that the current behavior 
will persist.  

Although transitioning from a positive trading day 
to a positive trading day and a negative trading day to 
a negative trading day has a probability that is above 
0.5, this does not indicate a strong persistence.  It could 
just as easily change to something closer to 0.5 the 
moment more values were incorporated into the dataset 
which will then indicate that the time series behaves 
like a random walk.  The behavior of the time series 
changes as we go along and it is important to have an 
idea of where it is possibly going.  

When the bust and burst states were introduced, in 
the long run, 2.3652% and 2.335% of the returns are 
busts and bursts, respectively.  It would be interesting 
to look at the political and economic events that have 
triggered such erratic behavior.

I also looked into day ahead forecasting based time 
domain models and an AR(1) and ARMA(1,2) for 
this data has the same forecasting ability.  I did not 
apply an autoregressive integrated moving average 
model because the data of daily returns is a stationary 
series.  I recommend considering frequency domain 

forecasting methods to model the random noise in 
the data.  Although the models were unable to predict 
random noise, they were able to accurately predict the 
signs of the values.  The PSE index is composed of 30 
stocks and having the ability to accurately predict the 
overall behavior of these 30 stocks on a day-to-day 
basis is a challenge.   
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