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In recent years, the influx of new financial products 
in the Philippines, including financial derivatives, 
has become inevitable. Some local banks have been 
granted limited authority by the Bangko Sentral ng 
Pilipinas (BSP) to engage in specified derivatives 
transactions, while some others are still in the stage of 
preparing to apply for a license for such transactions. 
The bond market is also on the rise with an increasing 
participation of corporate bond issuers. Amidst these 
developments is the need for sound risk management 
structure and reliable models for the pricing and 
valuation of financial products.

Financial risk management and valuation of 
financial securities require sound and reliable 

mathematical models. Loss estimates and pricing are 
based on current and forecast of underlying economic 
variables such as interest rates and currency exchange 
rates. Currently, several financial institutions in the 
Philippines are either using vendor-developed systems, 
which are essentially “black box,” or have developed 
their internal models which are mostly based on 
popular or classical models. There is indeed a challenge 
for financial institutions, particularly in the banking 
industry, to develop their own models which are more 
reliable, relevant, and suited to the market data.

Public debt management also requires sound 
mathematical models for forecasting the evolution of 
macroeconomic factors such as interest rates, exchange 
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rates, and primary budget deficit/surplus. Finding an 
optimal debt strategy means determining a mix of debt 
instruments that minimizes cost to the government, in 
terms of interest payment, subject to a prudent risk 
level. It may then be used to guide the policy makers 
in creating a short-term or medium-term borrowing 
plan, which will hopefully improve the domestic debt 
market due to enhanced predictability and transparency 
related to public debt.

Forecasting the term structure of interest rates has 
created a huge literature spanning several decades. 
Some of these make use of mean-reverting stochastic 
models, such as the models of Vasicek (1977) and Cox, 
Ingersoll, and Ross (1985). Another class which has 
gained popularity among government policy makers 
due to its good fit to observed term structure includes 
Nelson and Siegel’s (1987) model and its variations. 

This paper aims to present a method for forecasting 
the term structure of interest rates that is applicable to 
the Philippine market data. It is based on the framework 
developed by Diebold and Li (2006), which is a 
reinterpretation of the model introduced by Nelson 
and Siegel (1987). Although several extensions are 
available, the original three-factor model will be used. 
The procedure, however, will be modified and the 
results of the implementation will be highly dependent 
on the data used.

The Nelson-Siegel model is a popular model for 
the term structure of interest rates. It was introduced 
by Nelson and Siegel (1987) as a class of parametric 
functions to capture the range of shapes typically 
associated with yield curves. Diebold and Li (2006) 
reformulated it as a dynamic factor model and used 
it to forecast the yield curve. Several extensions and 
variations of the model have been introduced with the 
goal of improving the out-of-sample forecasts (see for 
example Christensen, Diebold, & Rudebuscha, 2011; 
Exterkate, Dijk, Heij, & Groenen, 2013; Koopman, 
Mallee, & Van der Wel, 2010).

This paper will focus on the original three-factor 
Nelson-Siegel model. Following the method in 
Diebold and Li (2006), the latent factors, which will be 
referred to throughout this paper as beta parameters, 
will be estimated from historical data by fitting the 
Nelson-Siegel equation to the yield curves over time 
and assumed to follow a time series model. However, 
instead of assuming independent univariate AR(1) 
processes for all the beta parameters, the best time 
series model will be searched using standard statistical 

tools. The model that will be used is of the form 
ARMA(p,q)+eGARCH(1,1) or ARMA for the mean 
equation and Exponential GARCH for the variance 
equation. Moreover, for forecasting, the dependence 
structure of the beta parameters will be considered 
by using an appropriate copula to obtain their joint 
distribution.

The remainder of this paper proceeds as follows: 
The next section discusses the Nelson-Siegel equation 
for the yield. We then describe the data and the general 
procedure that will be implemented, to be followed 
with the results of the implementation including the 
time series found for the beta parameters, the copula 
used to obtain their joint parameters, and the forecast 
performance of the model. Finally, we provide the 
conclusion.

The Nelson-Siegel Model

Let 
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 Let 𝑝𝑝𝑡𝑡(𝜏𝜏) be the price at time 𝑡𝑡 of a zero-coupon bond that pays 1 peso at time 𝑡𝑡 + 𝜏𝜏, that 

is, 𝜏𝜏 is the time to maturity of the bond in years. Let 𝑦𝑦𝑡𝑡(𝜏𝜏) be the corresponding continuously 

compounded nominal yield. This yield is also referred to as a zero rate. Then 

 𝑝𝑝𝑡𝑡(𝜏𝜏) = 𝑒𝑒−𝜏𝜏𝜏𝜏𝑡𝑡(𝜏𝜏) (1) 

If  𝑓𝑓𝑡𝑡(𝜏𝜏) is the instantaneous forward rate with maturity at time 𝑡𝑡 + 𝜏𝜏 contracted at time 𝑡𝑡, then 

 𝑓𝑓𝑡𝑡(𝜏𝜏) = −𝜕𝜕 ln 𝑝𝑝𝑡𝑡(𝜏𝜏)
𝜕𝜕𝜏𝜏  

(2) 

It follows that 

 𝑦𝑦𝑡𝑡(𝜏𝜏) =
1
𝜏𝜏 ∫ 𝑓𝑓𝑡𝑡(𝑢𝑢)𝑑𝑑𝑢𝑢

𝜏𝜏

0
 

(3) 

 Yield curve at a particular point in time 𝑡𝑡 is a curve that describes the spot interest rates 

𝑦𝑦𝑡𝑡(𝜏𝜏) for different maturities 𝜏𝜏. These curves are typically monotonic, humped or S-shaped 

 be the price at time t of a zero-coupon 
bond that pays 1 peso at time 
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Yield curve at a particular point in time t is a curve 
that describes the spot interest rates yt (t) for different 
maturities t. These curves are typically monotonic, 
humped or S-shaped (Nelson & Siegel, 1987). To 
generate this range of shapes, a parsimonious model 
introduced by Nelson and Siegel assumes that the 
forward rate follows the equation
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(Nelson & Siegel, 1987). To generate this range of shapes, a parsimonious model introduced by 

Nelson and Siegel assumes that the forward rate follows the equation 

 𝑓𝑓𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡 + 𝛽𝛽2𝑡𝑡
𝜏𝜏
𝜆𝜆𝑡𝑡
𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡  (4) 

where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 

second-order linear ordinary differential equation 

 𝑥𝑥′′ + 2
𝜆𝜆𝑡𝑡
𝑥𝑥′ + 1

𝜆𝜆𝑡𝑡2
𝑥𝑥 = 𝛽𝛽0𝑡𝑡

𝜆𝜆𝑡𝑡2
 

(5) 

From Equation (3),  

 𝑦𝑦𝑡𝑡(𝜏𝜏) =
1
𝜏𝜏 ∫ [𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑒𝑒−𝑢𝑢/𝜆𝜆𝑡𝑡 + 𝛽𝛽2𝑡𝑡

𝑢𝑢
𝜆𝜆𝑡𝑡
𝑒𝑒−𝑢𝑢/𝜆𝜆𝑡𝑡] 𝑑𝑑𝑢𝑢

𝜏𝜏

0
 

(6) 

Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 

 
𝑦𝑦𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡 (

1 − 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

) + 𝛽𝛽2𝑡𝑡 (
1 − 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡) 

(7) 

The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 

1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 
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precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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(Nelson & Siegel, 1987). To generate this range of shapes, a parsimonious model introduced by 

Nelson and Siegel assumes that the forward rate follows the equation 
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where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 

second-order linear ordinary differential equation 
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 

 
𝑦𝑦𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡 (
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 

1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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(Nelson & Siegel, 1987). To generate this range of shapes, a parsimonious model introduced by 

Nelson and Siegel assumes that the forward rate follows the equation 
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where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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(Nelson & Siegel, 1987). To generate this range of shapes, a parsimonious model introduced by 

Nelson and Siegel assumes that the forward rate follows the equation 

 𝑓𝑓𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡 + 𝛽𝛽2𝑡𝑡
𝜏𝜏
𝜆𝜆𝑡𝑡
𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡  (4) 

where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 

second-order linear ordinary differential equation 
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 

 
𝑦𝑦𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡 (
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡) 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 

1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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(Nelson & Siegel, 1987). To generate this range of shapes, a parsimonious model introduced by 

Nelson and Siegel assumes that the forward rate follows the equation 
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where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 

second-order linear ordinary differential equation 
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 

 
𝑦𝑦𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡 (
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 

1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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Nelson and Siegel assumes that the forward rate follows the equation 

 𝑓𝑓𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡 + 𝛽𝛽2𝑡𝑡
𝜏𝜏
𝜆𝜆𝑡𝑡
𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡  (4) 

where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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 The three factors are also interpreted in terms of level, slope, and curvature of the yield 

curve (Diebold & Li, 2006). The factor 𝛽𝛽0𝑡𝑡 governs the level of the curve since lim
𝜏𝜏→+∞

𝑦𝑦𝑡𝑡(𝜏𝜏) =

𝛽𝛽0𝑡𝑡 and an increase in 𝛽𝛽0𝑡𝑡 increases all yields equally. Thus, this factor is responsible for parallel 

yield curve shifts. The factor 𝛽𝛽1𝑡𝑡 is related to the yield curve slope. If the slope of the yield curve 

is defined as lim
𝜏𝜏→+∞

𝑦𝑦𝑡𝑡(𝜏𝜏) − lim
𝜏𝜏→0+ 𝑦𝑦𝑡𝑡(𝜏𝜏), then it is equal to −𝛽𝛽1𝑡𝑡. Lastly, 𝛽𝛽2𝑡𝑡 is related to the 

curvature, defined by Diebold and Li as 2𝑦𝑦𝑡𝑡(24) − 𝑦𝑦𝑡𝑡(3) − 𝑦𝑦𝑡𝑡(120), where maturity is given in 

months. 

Estimation of Parameters 

In Equation (7), the parameter 𝜆𝜆𝑡𝑡 is referred to as the shape parameter. For each t, when 

𝜆𝜆𝑡𝑡 is specified, the model becomes linear in the parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡. Let 𝑌𝑌𝜏𝜏
𝑡𝑡 = 𝑦𝑦𝑡𝑡(𝜏𝜏), 

𝑋𝑋1𝜏𝜏
𝑡𝑡 = 1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
, and 𝑋𝑋2𝜏𝜏

𝑡𝑡 = 1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡. Then Equation (7) becomes 

 𝑌𝑌𝜏𝜏
𝑡𝑡 = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑋𝑋1𝜏𝜏

𝑡𝑡 + 𝛽𝛽2𝑡𝑡𝑋𝑋2𝜏𝜏
𝑡𝑡  (8) 

Specific value of 𝜏𝜏 gives specific values of 𝑋𝑋1𝜏𝜏
𝑡𝑡  and 𝑋𝑋2𝜏𝜏

𝑡𝑡 . 

 In practice, a record of daily datasets is collected, each dataset indexed by a particular 

day number t and indicating the interest rates 𝑦𝑦𝑡𝑡(𝜏𝜏) for different maturities 𝜏𝜏. For each t, the 

parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 in Equation (8) are estimated using, for example, the ordinary least 

squares (OLS) method for multiple linear regression. 

 Diebold and Li (2006) used the same value of 𝜆𝜆𝑡𝑡 for all t. Thus, a series of estimates {𝛽𝛽0𝑡𝑡,

𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡} was obtained based on this single value of 𝜆𝜆𝑡𝑡. Others (Nelson & Siegel, 1987; Annaert, 

Claes, De Ceuster, & Zhang, 2012) considered a range of values of 𝜆𝜆𝑡𝑡 for each t. The method 
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Estimation of Parameters 

In Equation (7), the parameter 𝜆𝜆𝑡𝑡 is referred to as the shape parameter. For each t, when 

𝜆𝜆𝑡𝑡 is specified, the model becomes linear in the parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡. Let 𝑌𝑌𝜏𝜏
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(Nelson & Siegel, 1987). To generate this range of shapes, a parsimonious model introduced by 

Nelson and Siegel assumes that the forward rate follows the equation 

 𝑓𝑓𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡 + 𝛽𝛽2𝑡𝑡
𝜏𝜏
𝜆𝜆𝑡𝑡
𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡  (4) 

where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 

second-order linear ordinary differential equation 

 𝑥𝑥′′ + 2
𝜆𝜆𝑡𝑡
𝑥𝑥′ + 1

𝜆𝜆𝑡𝑡2
𝑥𝑥 = 𝛽𝛽0𝑡𝑡

𝜆𝜆𝑡𝑡2
 

(5) 

From Equation (3),  

 𝑦𝑦𝑡𝑡(𝜏𝜏) =
1
𝜏𝜏 ∫ [𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑒𝑒−𝑢𝑢/𝜆𝜆𝑡𝑡 + 𝛽𝛽2𝑡𝑡

𝑢𝑢
𝜆𝜆𝑡𝑡
𝑒𝑒−𝑢𝑢/𝜆𝜆𝑡𝑡] 𝑑𝑑𝑢𝑢

𝜏𝜏

0
 

(6) 

Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 

 
𝑦𝑦𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡 (

1 − 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

) + 𝛽𝛽2𝑡𝑡 (
1 − 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡) 

(7) 

The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 

1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 

 and 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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} was obtained based on this single value of  
lt. Others (Nelson & Siegel, 1987; Annaert, Claes, 
De Ceuster, & Zhang, 2012) considered a range of 
values of lt for each t. The method was referred to 
as grid search. In this case, the value of lt and the 
set of estimates {
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loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 
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𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 

} were chosen based 
on the highest R2. Thus, different datasets could have 
different shape parameters lt. Furthermore, the issue of 
multicollinearity was considered and ridge regression 
was implemented as a remedy (Annaert et al., 2012).

Data and Procedure

Data
Historical data of interest rates were initially 

obtained from the website of Philippine Dealing and 
Exchange Corporation or PDEx (originally http://www.
pdex.com.ph, but data now available thru the website 
of the parent company Philippine Dealing Systems, 
http://www.pds.com.ph/ ). The rates for tenors at most 
one year were zero rates so these were used. The data 
for tenors longer than one year, however, were not zero 
rates so the corresponding zero rates were obtained 
from Bloomberg (2013). Note that the zero rates can 
also be computed using a method called bootstrapping.
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precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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PDEx is one of the two major exchanges in the 
Philippines, the other being the Philippine Stock 
Exchange (PSE). PDEx is a venue for trading fixed-
income and other securities, most of which are 
government securities. From daily trading, PDEx 
calculates and publishes Philippine Dealing System 
Treasury Reference Rates such as PDS Treasury 
Reference Rate AM (PDST-R1) and PDS Treasury 
Reference Rate PM (PDST-R2). Both PDST-R1 and 
PDST-R2 benchmarks are intended to become the 
source of reference rates for the repricing of loans, 
securities, derivative transactions, and other interest 
rate sensitive instruments to be issued. They are also 
intended to become the bases for market valuation 
of Government Securities and other Philippine-peso-
denominated fixed income securities. 

In this work, the PDST-R2 rates from January 2, 
2008 to December 25, 2013 were chosen. The PDST-R2 
rate is the weighted average of the yields from done 
transactions of the set of benchmark securities for each 
tenor up to 4:15 p.m. For simplicity, weekly data were 
extracted by taking the rates Wednesday of each week. 
Index t is attached to each week. 

Procedure
In using the Nelson-Siegel model to forecast the 

term structure, three major steps were implemented 
in this work. The first step was to run multiple linear 
regression in the form of Equation (8) for each dataset 
t to obtain the beta parameters 
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(Nelson & Siegel, 1987). To generate this range of shapes, a parsimonious model introduced by 

Nelson and Siegel assumes that the forward rate follows the equation 

 𝑓𝑓𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡 + 𝛽𝛽2𝑡𝑡
𝜏𝜏
𝜆𝜆𝑡𝑡
𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡  (4) 

where  𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, 𝛽𝛽2𝑡𝑡, and 𝜆𝜆𝑡𝑡 are constants and 𝜆𝜆𝑡𝑡 ≠ 0. Note that 𝑥𝑥(𝜏𝜏) = 𝑓𝑓𝑡𝑡(𝜏𝜏) is a solution to the 

second-order linear ordinary differential equation 
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 

 
𝑦𝑦𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡 (

1 − 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

) + 𝛽𝛽2𝑡𝑡 (
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡) 

(7) 

The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 

1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 

 . This 
step required a prior choice of value or values of the 
shape parameter lt. The next step was to assume a 
model for the time series of beta parameters obtained. 
This model was then used to forecast future values 
of these parameters. The last step was to plug in the 
future values of the beta parameters and the same 
shape parameter in Equation (7) to obtain forecast of 
interest rates yt (t).

For the first step, regression using a fixed shape 
parameter across all datasets and using a grid search 
were both considered initially. For the grid search, the 
values of lt ranged from 2.000000 to 40.000000 with 
increments of 0.000001 for each t. The lt together 
with the set of beta parameters 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 
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𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 

 that 
produced the highest R2 for each t were taken. It was 
noted that quite a number of datasets had very high R2  
but the beta parameters obtained were not realistic, 
that is, the values were very far from the trend in the 
majority of datasets. This problem did not appear in 

the other method that used a fixed shape parameter 
across all datasets, which will be referred to for the rest 
of the paper as fixed lambda method. To determine 
this fixed shape parameter, first, for each lambda in 
the same range used in grid search, beta parameters   
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 
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, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 

 were estimated and corresponding   
R2 were taken for each t. The average  over all t was 
then calculated. Finally, the shape parameter that 
produced the highest average  was chosen. Because the 
results of the fixed lambda method were more stable, 
the succeeding steps proceeded from these.

It is important to note that the results in either 
method, grid search or fixed lambda, were dependent 
on the choice of range of values of  lt.

Having chosen the fixed shape parameter and 
the resulting beta parameters for each t, the second 
step was to fit a univariate time series model for 
each of {
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Evaluating the integral at the right, we obtain the Nelson-Siegel model for the yield curve 
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The parameters 𝛽𝛽0𝑡𝑡, 𝛽𝛽1𝑡𝑡, and 𝛽𝛽2𝑡𝑡 are called factors and their coefficients are called factor 

loadings. The factor loading of 𝛽𝛽0𝑡𝑡 is 1, a constant that does not decay to zero even as 𝜏𝜏 → +∞. 

Thus, it has significant contribution to the yield for any maturity; hence, it is referred to as the 

long-term factor. The factor 𝛽𝛽1𝑡𝑡 is called the short-term factor because its factor loading, 

1−𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

, has significant contribution to the value of 𝑦𝑦𝑡𝑡(𝜏𝜏) at shorter maturities (smaller values of 

𝜏𝜏). Moreover, it decreases to 0 as 𝜏𝜏 → +∞. Lastly, 𝛽𝛽2𝑡𝑡 is referred to as the medium-term factor 

because its factor loading, 1−𝑒𝑒
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𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡, starts at 0, increases, then decays to 0. More 

precisely, it approaches 0 as 𝜏𝜏 → 0+ and as 𝜏𝜏 → +∞. Its significant contribution to the yield is in 

the medium term to maturity. 
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}. First, each series 
was tested for stationarity and was found to have 
a unit root. Hence, each series was transformed by 
differencing to remove the unit root. Each series also 
showed strong presence of ARCH effect. The best 
model obtained for each differenced series followed 
ARMA(p,q)+eGARCH(1,1). Then the error terms of 
the estimated models for the betas were considered as 
a random vector whose joint probability distribution 
function (pdf) was to be determined by the copula 
method. Finally, random numbers from the joint pdf 
of the error terms were generated. These were then 
used in the final step, forecasting the term structure 
of interest rates.

Implementation and Results

Fitting the Yield Curve
A total of 313 datasets of zero rates from January 2, 

2008 to December 25, 2013 were considered. Each 
dataset gave the interest rates in hundred basis 
points for maturities 1 month (Mo), 3 Mo, 6 Mo, 1 
year (Yr), 2Yr, 3Yr, 4Yr, 5Yr, 6Yr, 7Yr, 8Yr, 9Yr, 
10Yr, 15Yr, 20Yr, and 30Yr. Figure 1 shows sample 
yield curves.

Before performing linear regression, all rates were 
first converted to continuously compounding rates. For 
the processing of data, from estimation to time series 
modelling of the beta parameters, only the rates from 
January 2, 2008 to December 26, 2012 were used. 
Thus, 261 datasets were considered. The remaining 
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historical data were to be used to check the reliability 
of the forecast.

The fixed lambda method described earlier 
produced lt = 9.807527. To summarize the results of 
linear regression, the values of R2 and beta parameters 
of Equation (8) for the different datasets are described 
in Table 1.

Forecasting of interest rates requires forecast of 
the beta parameters. Thus, the next step was to find 
appropriate time series models for them.

Time Series Models for the Beta Parameters
All statistical procedures were implemented using 

the software R. First, univariate time series models 
were fitted on the estimated betas. As seen in Figures 
2 and 3, presence of non-stationarity and of conditional 
heteroscedasticity were apparent. These observations 
were justified by KPSS test (for the actual series) and 
ARCH-LM test (for the differenced series), giving all 
significant p-values. These are standard procedures in 
detecting these features of most financial time series.

The best models for all three differenced series 
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equation and Exponential GARCH for the variance equation. In particular, based on the 

Bayesian Information Criterion (BIC), both {𝑑𝑑𝛽𝛽0} and {𝑑𝑑𝛽𝛽1} followed MA(1)+eGARCH(1,1) 
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 The estimated models were given by the following equations. Let 𝑑𝑑𝛽𝛽𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑖𝑖,𝑡𝑡 − 𝛽𝛽𝑖𝑖,𝑡𝑡−1,

𝑖𝑖 = 0,1,2, 𝑡𝑡 = 1, 2, … , 𝑇𝑇, where T is the sample size. Then 

 𝑑𝑑𝛽𝛽𝑖𝑖,𝑡𝑡 = 𝜇𝜇𝑖𝑖 + 𝜑𝜑𝑖𝑖𝑑𝑑𝛽𝛽𝑖𝑖,𝑡𝑡−1 + 𝑎𝑎𝑖𝑖,𝑡𝑡 + 𝜃𝜃𝑖𝑖𝑎𝑎𝑖𝑖,𝑡𝑡−1 (9) 
 𝑎𝑎𝑖𝑖,𝑡𝑡 = 𝜎𝜎𝑖𝑖,𝑡𝑡𝜀𝜀𝑖𝑖,𝑡𝑡 (10) 
 

ln(𝜎𝜎𝑖𝑖,𝑡𝑡
2 ) = 𝜔𝜔𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑎𝑎𝑖𝑖,𝑡𝑡−1

2 + 𝛾𝛾𝑖𝑖 (|𝑎𝑎𝑖𝑖,𝑡𝑡−1|
𝜎𝜎𝑖𝑖,𝑡𝑡−1

− 𝐸𝐸 (|𝑎𝑎𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝑖𝑖,𝑡𝑡−1

|)) + 𝜅𝜅𝑖𝑖 ln(𝜎𝜎𝑖𝑖,𝑡𝑡
2 ) 

(11) 

where 𝐸𝐸 (|𝑎𝑎𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝑖𝑖,𝑡𝑡−1

|) = 𝐸𝐸(|𝜀𝜀𝑖𝑖,𝑡𝑡|) = 0 when √ 𝜈𝜈
𝜈𝜈−2 𝜀𝜀𝑖𝑖,𝑡𝑡~𝑡𝑡2.  The coefficients and corresponding 

standard errors are given in Table 2. 

 Table 2 

 Estimated Parameters of ARMA + eGARCH Models and Corresponding Standard Errors 

 i=0 i=1 i=2 

μi -0.000385 0.000386 -0.000247 
  (0.000480) (0.000426) (0.000409) 

φi 0 0 -0.152738 
      (0.043782) 

θi -0.215126 -0.199544 -0.099143 
  (0.053564) (0.050340) (0.039429) 

ωi -0.095836 -0.105876 -0.079393 
  (0.036828) (0.049583) (0.051335) 

αi 0.390405 -0.276128 -0.316096 
  (0.207581) (0.188705) (0.206423) 

γi 0.537282 0.626099 0.558905 
  (0.277760) (0.343980) (0.360170) 

κi 0.984873 0.983536 0.983487 
  (0.006315) (0.008814) (0.008566) 

  

With T as the sample size, the estimated initial values to be used in forecasting are given 

in Table 3. 

 Table 3 
 Estimated Initial Values Based on the Fitted ARMA + eGARCH Models 

  ai,T σi,T 
i=0 -0.00492075 0.01729929 
i=1 0.00121345 0.01571196 
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With T as the sample size, the estimated initial values to be used in forecasting are given 

in Table 3. 
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 Estimated Initial Values Based on the Fitted ARMA + eGARCH Models 
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Figure 1. Actual yield curves for selected dates.
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Before performing linear regression, all rates were first converted to continuously 

compounding rates. For the processing of data, from estimation to time series modelling of the 

beta parameters, only the rates from January 2, 2008 to December 26, 2012 were used. Thus, 261 

datasets were considered. The remaining historical data were to be used to check the reliability of 

the forecast. 
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 Minimum, Maximum, Mean Values, and Standard Deviations of R2 and Beta Parameters 

 Min max mean standard deviation 

R2 80.26% 99.72% 96.22% 3.04% 

β0 0.02242 1.49527 0.17384 0.18941 

β1 -1.41810 0.01044 -0.13947 0.17833 

β2 -1.80766 0.24361 -0.04411 0.25549 
                      

 

Forecasting of interest rates requires forecast of the beta parameters. Thus, the next step 

was to find appropriate time series models for them. 

Time Series Models for the Beta Parameters 

Table 1.  Minimum, Maximum, Mean Values, and Standard Deviations of R2 and Beta Parameters

Min max mean standard deviation
R2 80.26% 99.72% 96.22% 3.04%

β0 0.02242 1.49527 0.17384 0.18941

β1 -1.41810 0.01044 -0.13947 0.17833

β2 -1.80766 0.24361 -0.04411 0.25549
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 Table 3 
 Estimated Initial Values Based on the Fitted ARMA + eGARCH Models 

  ai,T σi,T 
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The coefficients and corresponding standard errors 
are given in Table 2.

With T as the sample size, the estimated initial 
values to be used in forecasting are given in Table 3.

The assumed distribution of the error ei,t was the 
t distribution with 2 degrees of freedom or t2. Such 
distribution captures the heavy-tailedness of the series 
since it has infinite variance.

In generating future values of the beta parameters 
using the formulas in Equations (9) to (11), their 
underlying dependence structure based on their 
observed values were considered. This required 
estimating the distribution of the random vector (e0 , 
e1 , e2 )  consisting of the error variables. As assumed 

in the time series models, the distribution of each error 
variable was t2. The dependence structure of  (e0 , e1 , 
e2 ) was obtained using a copula function.

Using Copula for the Joint Density of the Error 
Variables

 First, pseudo-observations defined by 
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i=2 0.00144197 0.02802909 
 

The assumed distribution of the error 𝜀𝜀𝑖𝑖,𝑡𝑡 was the t distribution with 2 degrees of freedom 

or 𝑡𝑡2. Such distribution captures the heavy-tailedness of the series since it has infinite variance. 

In generating future values of the beta parameters using the formulas in Equations (9) to 

(11), their underlying dependence structure based on their observed values were considered. This 

required estimating the distribution of the random vector (𝜀𝜀0, 𝜀𝜀1, 𝜀𝜀2) consisting of the error 

variables. As assumed in the time series models, the distribution of each error variable was 𝑡𝑡2. 

The dependence structure of (𝜀𝜀0, 𝜀𝜀1, 𝜀𝜀2) was obtained using a copula function. 

Using Copula for the Joint Density of the Error Variables 

 First, pseudo-observations defined by  

 𝑈𝑈𝑖𝑖 =
𝑅𝑅𝑖𝑖

𝑇𝑇 + 1 
(12) 

were created, where T is the sample size and 𝑅𝑅𝑖𝑖 is the rank of the 𝑖𝑖𝑡𝑡ℎ observation. These pseudo-

observations were used to check the association among the error variables and in estimating the 

parameters of the copula model. The pairwise scatterplots of the pseudo-observations are shown 

in Figure 4. 

 

Figure 4 . Pairwise scatterplots of the pseudo-observations. 
 Based on the scatterplots of the pseudo-observations, the first error variable had strong 

negative association to the second and third error variables, while the second and the third had 

   
(12)

were created, where T is the sample size and  Ri is the 
rank of the ith observation. These pseudo-observations 
were used to check the association among the error 
variables and in estimating the parameters of the 
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 All statistical procedures were implemented using the software R. First, univariate time 

series models were fitted on the estimated betas. As seen in Figures 2 and 3, presence of non-

stationarity and of conditional heteroscedasticity were apparent. These observations were 

justified by KPSS test (for the actual series) and ARCH-LM test (for the differenced series), 

giving all significant p-values. These are standard procedures in detecting these features of most 

financial time series.

 

Figure 2. Time series plots of the estimated betas. 
 

 
 

Figure 3. Time series plots of the differenced betas. 
 
  

The best models for all three differenced series 𝑑𝑑𝛽𝛽𝑖𝑖, 𝑖𝑖 = 0,1,2, were ARMA for the mean 

equation and Exponential GARCH for the variance equation. In particular, based on the 

Bayesian Information Criterion (BIC), both {𝑑𝑑𝛽𝛽0} and {𝑑𝑑𝛽𝛽1} followed MA(1)+eGARCH(1,1) 

models, while {𝑑𝑑𝛽𝛽2} followed ARMA(1,1)+eGARCH(1,1). 
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copula model. The pairwise scatterplots of the pseudo-
observations are shown in Figure 4.

Based on the scatterplots of the pseudo-
observations, the first error variable had strong 
negative association to the second and third error 
variables, while the second and the third had strong 
positive correlation. Notice that the associations 
among the error variables showed a symmetric-
type dependence. That is, the dependence on the 
tails was almost the same as the distributions on 
the middle part of the distributions. One model that 
captures such symmetry in association between 
two uniform random variables, as depicted by the 
scatterplots, is the elliptical family. This family 
contains the Gaussian and t copulas. 

Estimation and goodness of fit test were performed 
for the Gaussian copulas. The estimation procedure 

was based on maximum pseudo-likelihood estimation 
proposed by Genest, Ghoudi, and Rivest (1995) and 
the goodness of fit test was based on the empirical 
copula proposed by Genest, Rémillard, and Beaudoin 
(2009). The results are shown in Table 4. Note that ri,j 
is the Pearson’s correlation coefficient of the ith and jth  
pseudo-observations.

 
Table 4.  Results of the Goodness-of-Fit Test Under 
the Gaussian Copula Assumption

Estimated parameter Sn p-value

ρ0,1= -0.981 0.0047 0.9296

ρ0,2= -0.959   

ρ1,2= 0.909   
 

Table 2.  Estimated Parameters of ARMA + eGARCH Models and Corresponding Standard Errors

i=0 i=1 i=2

μi

-0.000385 0.000386 -0.000247

(0.000480) (0.000426) (0.000409)

φi 
0 0 -0.152738

  (0.043782)

θi 
-0.215126 -0.199544 -0.099143

(0.053564) (0.050340) (0.039429)

ωi 
-0.095836 -0.105876 -0.079393

(0.036828) (0.049583) (0.051335)

αi 
0.390405 -0.276128 -0.316096

(0.207581) (0.188705) (0.206423)

γi

0.537282 0.626099 0.558905

(0.277760) (0.343980) (0.360170)

κi 
0.984873 0.983536 0.983487

(0.006315) (0.008814) (0.008566)
 

Table 3.  Estimated Initial Values Based on the Fitted ARMA + eGARCH Models

 ai,T σi,T

i=0 -0.00492075 0.01729929
i=1 0.00121345 0.01571196
i=2 0.00144197 0.02802909
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With p-value of 0.9296, it seemed that the Gaussian 
copula was adequate to capture the dependence of the 
pseudo-observations. The estimated correlation matrix 
was given by
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These estimated parameters were then used to simulate trivariate data with 𝑡𝑡2 margin and normal 

copula to capture the dependence. 

  
 
These estimated parameters were then used to simulate 
trivariate data with t2 margin and normal copula to 
capture the dependence.

From Equations (9) to (11) and the random numbers 
generated from the distribution of the random vector 
(e0 , e1 , e2 ), future values of the beta parameters were 
computed and used in the Nelson-Siegel equation

TERM STRUCTURE FORECASTING   15 
 

 From Equations (9) to (11) and the random numbers generated from the distribution of 

the random vector (𝜀𝜀0, 𝜀𝜀1, 𝜀𝜀2), future values of the beta parameters were computed and used in 

the Nelson-Siegel equation 

 
𝑦𝑦𝑡𝑡(𝜏𝜏) = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡 (

1 − 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡
𝜏𝜏/𝜆𝜆𝑡𝑡

) + 𝛽𝛽2𝑡𝑡 (
1 − 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡

𝜏𝜏/𝜆𝜆𝑡𝑡
− 𝑒𝑒−𝜏𝜏/𝜆𝜆𝑡𝑡) 

(13) 

with 𝜆𝜆𝑡𝑡 = 9.807527. The initial values were those obtained for the December 26, 2012 dataset: 

𝛽𝛽0,0 = 0.042670232 , 𝛽𝛽0,1 = 0.035735575, and 𝛽𝛽0,2 = 0.107586694. The randomness of the 

beta parameters were due to the residuals 𝜀𝜀𝑖𝑖,𝑡𝑡, 𝑖𝑖 = 0,1,2. 

Forecasting 

 To validate the model, a fraction of the available data, from January 2 to December 25, 

2013 (52 Wednesdays), was taken out. The goal was to compare the forecasts and the actual data 

taken out.  
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were obtained. Then the median of each beta was taken to obtain one triple  (𝛽𝛽01, 𝛽𝛽11, 𝛽𝛽21). 

This median triple was then used in Equation (7) to get the yield curve of week 1 (January 2, 

2013), 𝑦𝑦1(𝜏𝜏), where 𝜏𝜏 is the maturity. 
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with lt = 9.807527. The initial values were those 
obtained for the December 26, 2012 dataset:  b0,0 
= 0.042670232, b0,1 = 0.035735575, and b0,2 = 
0.0107586694. The randomness of the beta parameters 
were due to the residuals ei,t., i = 0,1,2.

Forecasting
To validate the model, a fraction of the available 

data, from January 2 to December 25, 2013 (52 
Wednesdays), was taken out. The goal was to compare 
the forecasts and the actual data taken out. 

First, 10,000 triples of random numbers (e0,1 , e1,2 , 
e2,1 ) from the joint distribution of the random vector 
(e0 , e1 , e2 ) of the residuals were produced. Each triple 
was substituted into the time series model to obtain the 
values of b01 , b11 , b21 . Thus, 10,000 triples (b01, b11 , 
b21 ) were obtained. Then the median of each beta was 
taken to obtain one triple (b01 , b11 , b21 ). This median 
triple was then used in Equation (7) to get the yield 
curve of week 1 (January 2, 2013), y1 (t), where t is 
the maturity.

For the second week (t = 2),10,000 triples of random 
numbers (e0,2 , e1,2 , e2,2 ) from the joint distribution of 
the random vector (e0 , e1 , e2 ) were again produced. 
These and the betas of previous weeks were plugged 
in the time series model to obtain 10,000 triples (b02 , 
b12 , b22 ). Again, the median of each beta was taken to 
get one triple (b02 , b12 , b22 ). This median triple was 
used in the Nelson-Siegel equation to get the yield 
curve y2 (t) for week 2 (January 9, 2013). This process 
was continued to find the yield curve for week t, t > 
2. Notice that medians of beta parameters were taken 
first before computing the yield yt (t). An alternative 
approach is to compute for each t the yield yt (t) using 
each of the 10,000 triples  (e0,t , e1,t , e2,t ) then take 

Figure 4 . Pairwise scatterplots of the pseudo-observations.
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i=2 0.00144197 0.02802909 
 

The assumed distribution of the error 𝜀𝜀𝑖𝑖,𝑡𝑡 was the t distribution with 2 degrees of freedom 

or 𝑡𝑡2. Such distribution captures the heavy-tailedness of the series since it has infinite variance. 

In generating future values of the beta parameters using the formulas in Equations (9) to 

(11), their underlying dependence structure based on their observed values were considered. This 

required estimating the distribution of the random vector (𝜀𝜀0, 𝜀𝜀1, 𝜀𝜀2) consisting of the error 

variables. As assumed in the time series models, the distribution of each error variable was 𝑡𝑡2. 

The dependence structure of (𝜀𝜀0, 𝜀𝜀1, 𝜀𝜀2) was obtained using a copula function. 

Using Copula for the Joint Density of the Error Variables 

 First, pseudo-observations defined by  

 𝑈𝑈𝑖𝑖 =
𝑅𝑅𝑖𝑖

𝑇𝑇 + 1 
(12) 

were created, where T is the sample size and 𝑅𝑅𝑖𝑖 is the rank of the 𝑖𝑖𝑡𝑡ℎ observation. These pseudo-

observations were used to check the association among the error variables and in estimating the 

parameters of the copula model. The pairwise scatterplots of the pseudo-observations are shown 

in Figure 4. 

 

Figure 4 . Pairwise scatterplots of the pseudo-observations. 
 Based on the scatterplots of the pseudo-observations, the first error variable had strong 

negative association to the second and third error variables, while the second and the third had 
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2 (January 9, 2013). This process was continued to find the yield curve for week t, 𝑡𝑡 > 2. Notice 

that medians of beta parameters were taken first before computing the yield  𝑦𝑦𝑡𝑡(𝜏𝜏). An 

alternative approach is to compute for each t the yield 𝑦𝑦𝑡𝑡(𝜏𝜏) using each of the 10,000 triples 

(𝜀𝜀0,𝑡𝑡, 𝜀𝜀1,𝑡𝑡, 𝜀𝜀2,𝑡𝑡) then take the median 𝑦𝑦𝑡𝑡(𝜏𝜏) for each  𝜏𝜏. This, however, will still resort to taking a 

single triple of beta parameters from previous weeks; otherwise, the process will be 

computationally expensive. 

 Figures 5 to 8 present sample forecast of interest rates per tenor and per week along with 

the actual data for comparison.

 

Figure 5. Forecast for 3-month tenor. 
 

 
Figure 6. Forecast for 5-year tenor. 

 

TERM STRUCTURE FORECASTING   16 
 

2 (January 9, 2013). This process was continued to find the yield curve for week t, 𝑡𝑡 > 2. Notice 

that medians of beta parameters were taken first before computing the yield  𝑦𝑦𝑡𝑡(𝜏𝜏). An 

alternative approach is to compute for each t the yield 𝑦𝑦𝑡𝑡(𝜏𝜏) using each of the 10,000 triples 

(𝜀𝜀0,𝑡𝑡, 𝜀𝜀1,𝑡𝑡, 𝜀𝜀2,𝑡𝑡) then take the median 𝑦𝑦𝑡𝑡(𝜏𝜏) for each  𝜏𝜏. This, however, will still resort to taking a 

single triple of beta parameters from previous weeks; otherwise, the process will be 

computationally expensive. 

 Figures 5 to 8 present sample forecast of interest rates per tenor and per week along with 

the actual data for comparison.

 

Figure 5. Forecast for 3-month tenor. 
 

 
Figure 6. Forecast for 5-year tenor. 

 

Figure 5.  Forecast for 3-month tenor.

Figure 6. Forecast for 5-year tenor.Running Head: TERM STRUCTURE FORECASTING  1 

 
Figure 7. Yield curve forecast for week 1. 

 

 
Figure 8. Yield curve forecast for week 9.

 
 It was observed that the forecasting accuracy is weakened as one goes farther into the 

future. This is a limitation of any time series models. Thus, instead of 1-year forecast, only 12 

weeks were considered. 

 The root mean square errors (RMSE) per tenor and per week are shown in Tables 5 and 

6. In can be seen that the best forecast is for 5-year yield, with only 6 bps RMSE, and the least 

accurate is for 10-year yield with 27 bps RMSE. 

Table 5 
RMSE Per Tenor 

  1 Mo 3 Mo 6 Mo 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 
RMSE 0.1106% 0.1556% 0.1489% 0.1071% 0.1821% 0.1460% 0.1310% 0.0635% 

  6 Yr 7 Yr 8 Yr 9 Yr 10 Yr 15 Yr 20 Yr 30 Yr 
RMSE 0.0830% 0.1399% 0.1921% 0.2378% 0.2743% 0.2636% 0.1507% 0.1655% 

 

Table 6 

RMSE Per Week 

Week 1 2 3 4 5 6 

Figure 7.  Yield curve forecast for week 1.
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the median yt (t) for each t. This, however, will still 
resort to taking a single triple of beta parameters 
from previous weeks; otherwise, the process will be 
computationally expensive.

Figures 5 to 8 present sample forecast of interest 
rates per tenor and per week along with the actual data 
for comparison.

It was observed that the forecasting accuracy is 
weakened as one goes farther into the future. This is 
a limitation of any time series models. Thus, instead 
of 1-year forecast, only 12 weeks were considered.

The root mean square errors (RMSE) per tenor and 
per week are shown in Tables 5 and 6. In can be seen 
that the best forecast is for 5-year yield, with only 6 
bps RMSE, and the least accurate is for 10-year yield 
with 27 bps RMSE.

Conclusion and Recommendation

In this paper, the three-factor Nelson-Siegel model 
was applied to forecast the term structure of interest 
rates using Philippine market data. Using a fixed shape 
parameter, the equation for the yield became linear in 
the beta parameters. Such equation was fitted to each 
historical dataset of zero rates thereby producing a 
series of beta parameters. An appropriate time series 
model was then obtained for each beta parameter. 
Based on the historical data, the best model for each 
beta was of the form ARMA(p,q)+eGARCH(1,1). It 
is important to note that a different set of historical 
data may produce a different time series model for 
the beta parameters. 

 Forecast of interest rates was based on the 
assumption that yield curve would follow the Nelson-
Siegel equation with the same shape parameter as 
produced from historical data and with beta parameters 
generated from the time series model. The dependence 
structure of the beta parameters was considered in 
generating their future values. This was carried out by 
finding the joint distribution of the error variables via 
appropriate copula.

Results showed that forecast of interest rates for 
different tenors, short, medium or long, was relatively 
good up to the next three months. From then on, the 
accuracy weakened. This showed that the model, 
wherein parameters were based on historical data, 
could be reliable only for the near future. For an active 
market, this is good enough since the models for the 
parameters can be adjusted every trading day.

As mentioned earlier, a model for forecasting the 
term structure of interest rates is essential in designing 
an optimal debt strategy for the government. This paper 
presents one such model and how it can be applied to 
the Philippine market data. Forecast of interest rates 
will help the policy makers determine the appropriate 
mix of debt instruments that will minimize cost subject 
to a prudent risk level.  
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