Structure, Design and Fabrication of a Novel Conducting Polypyrrole-Based Photovoltaic Cell and Storage Device

Maria Carla Manzano1,*, Enrique Manzano1, Chiara Rosario Julia Lanuza1, and Reuben Quiroga1

1De La Salle University – Manila
*maria.carla.manzano@dlsu.edu.ph

Abstract: Conducting polypyrrole-based photovoltaic cells and storage devices were designed and fabricated as an alternative to silicon-based solar cells to address the world’s need for a clean and renewable energy source. The photovoltaic cells and storage devices constructed are (1) indium·tin·oxide/polypyrrole/n·Si/aluminum (ITO/Ppy/n-Si/Al) and (2) indium·tin·oxide/polypyrrole/dielectric/aluminum (ITO/Ppy/dielectric/Al) in a wet, dry, or ionic·solution·impregnated·polypyrrole sandwich configuration. Dielectrics that were used and tested are glass, paper, varnish, and paper/varnish. The device also functions as a storage device, eliminating the need for a battery to store generated electricity. Under halogen lamp illumination, the ITO/Ppy/paper/Al photovoltaic storage device using ionic·solution·impregnated·polypyrrole film obtained an open·circuit voltage as high as 1.128V. Under solar intensity of about 100W/m², a short·circuit current as high as 7.35mA was obtained from the ITO/Ppy/paper/varnish/Al photovoltaic storage device using ionic·solution·impregnated·polypyrrole film.

Key Words: solar cell; conducting polypyrrole; photovoltaic cell; storage device