

## DE LA SALLE UNIVERSITY College of Science Department of Mathematics



**OPRESM1** – Operations Research Models 1

Prerequisite: LINPROG

#### Prerequisite to: OPRESM2

#### Instructor:\_\_\_\_ Consultation Hours:\_

#### Contact details:\_\_\_\_\_ Class Schedule and Room:\_\_\_\_\_

#### **Course Description**

This course is designed for BS Mathematics students who are majoring in Business Applications covering topics on the integer linear programming (ILP) models, transportation model, network models, unconstrained and constrained optimization.

#### Learning Outcomes

On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA)

| ELGA                          | Learning Outcome                                                   |
|-------------------------------|--------------------------------------------------------------------|
| Critical and Creative Thinker | Develop an understanding and appreciation of specialized linear    |
| Effective Communicator        | programming concepts (integer LP, transportation and assignment    |
| Lifelong Learner              | models, network models) and unconstrained and constrained          |
| Service-Driven Citizen        | optimization as effective tools in addressing real world problems  |
|                               | especially those that are relevant to decision making in business, |
|                               | economics and other related areas.                                 |

#### Final Course Output

As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

| Learning Outcome                           | Required Output                   | Due Date |
|--------------------------------------------|-----------------------------------|----------|
| At the end of the course, the student will | Case Studies involving any ONE of | Week 13  |
| develop an understanding and appreciation  | the following types:              |          |
| of specialized linear programming          | (1) Minimum Cost Network Flow     |          |
| concepts as effective tools in addressing  | Problem                           |          |
| real world problems especially those that  | (2) Integer Programming Problem   |          |
| are relevant to decision making in         | (3) Constrained or Unconstrained  |          |
| business, economics and other related      | Optimization Problem              |          |
| areas.                                     | Form of output: written           |          |

# Rubric for assessment

| written Grou                         | p Report                                                                          |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                               |
|--------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| CRITERIA                             | Excellent (4)                                                                     | Good (3)                                                                                                                                   | Satisfactory (2)                                                                                                                                                                      | Needs<br>Improvement (1)                                                                                                      |
| Content and<br>Organization<br>(55%) | In-depth and<br>insightful<br>discussion in<br>addition to score<br>3 performance | Logical sequencing<br>of information<br>throughout.<br>Sufficient<br>supporting details.<br>Clear and effective<br>concluding<br>paragraph | Logical sequencing<br>of information most<br>of the time. Details<br>are given but<br>inadequate to<br>support the topic.<br>Clear concluding<br>paragraph but lacks<br>effectiveness | Information<br>presented with little<br>organization. Most of<br>the details irrelevant.<br>Concluding<br>paragraph not clear |
| Grammar<br>(30%)                     |                                                                                   | No error                                                                                                                                   | Between one and three errors                                                                                                                                                          | More than four errors                                                                                                         |
| Bibliography<br>(15%)                |                                                                                   | All resources cited                                                                                                                        | Some of the resources not cited                                                                                                                                                       | Majority of the resources not cited                                                                                           |

#### Group Member Assessment

| Criteria            | Excellent/4                                                                                                                | Good/3                                                                                            | Satisfactory/2                                           | Needs<br>Improvement/1                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|
| Contribution<br>25% | Group member<br>completed an equal<br>share of work<br>and strived to<br>maintain that equity<br>throughout the<br>project | Group member<br>contributed<br>significantly, but<br>other members<br>clearly<br>contributed more | Group member<br>contributed little<br>toward the project | Group members<br>contributions were<br>insignificant or<br>nonexistent |

| Dependability<br>25% | Group member<br>provided<br>contributions with<br>100% punctuality<br>and always<br>appeared for group<br>work | Group member<br>contributions<br>were mostly<br>punctual and<br>almost always<br>appeared for<br>group work | Group member<br>contributions were<br>regularly late and<br>often missed<br>scheduled group<br>work | Group member<br>was undependable<br>forcing other<br>members to take up<br>the slack   |
|----------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Efficiency<br>25%    | Work performed<br>was very useful and<br>contributed<br>significantly to the<br>final product                  | Participation was<br>inefficient and<br>thus contributions<br>were less than<br>expected                    | Work performed<br>was inappropriate<br>and mostly useless<br>toward the final<br>product            | Work performed was<br>completely<br>ineffective<br>and useless in the<br>final product |
| Attitude<br>25%      | Group member was<br>very positive<br>and pleasant to<br>work with                                              | Group member<br>didn't complain<br>but offered little<br>enthusiasm                                         | Group member<br>sometimes<br>complained and<br>was somewhat of<br>a burden                          | Group member<br>often complained<br>and generally<br>demoralized the<br>group          |

Additional Requirements
Aside from the learning output, the student will be assessed at other times during the term by the following:
• Skills Check (Seatwork/Quizzes/Boardwork)

- Individual/Group Report
- Individual/Group Problem Set

### Grading System

|                                    |                                   |                                 |                            | Scale:                                                                                                    |                   |
|------------------------------------|-----------------------------------|---------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|
|                                    | FOR<br>EXEMPTED                   | FOR STUDENTS<br>with FINAL EXAM |                            | 95-100%         4.0           89-94%         3.5           92-80%         2.0                             | 4.0<br>3.5        |
|                                    | STUDENTS<br>(w/out Final<br>Exam) | with<br>no missed<br>quiz       | With<br>one missed<br>quiz | 83-88%         3.0           78-82%         2.5           72-77%         2.0           66-71%         1.5 | 2.5<br>2.0<br>1.5 |
| Average of quizzes                 | 95%                               | 65%                             | 55%                        | 60-65%                                                                                                    | 1.0               |
| Seatwork, Boardwork,<br>Assignment | 5%                                | 5%                              | 5%                         | <60% 0.0                                                                                                  | 0.0               |
| Final exam                         | -                                 | 30%                             | 40%                        | ]                                                                                                         |                   |

# Learning Plan

| Learning Outcome      | Culminating Topics               | Week  | Learning Activities           |
|-----------------------|----------------------------------|-------|-------------------------------|
|                       |                                  | No.   | Ũ                             |
| Develop an            | 1. The Network Simplex Method    | Week  | Group discussion and          |
| understanding and     | 1.1 Network Terminology          | 1 – 2 | presentations                 |
| appreciation of       | 1.2 Minimum-Cost Network Flow    |       | Skills exercises              |
| specialized linear    | Problems                         |       | Student self-assessment and   |
| programming           | 1.3 The Network Simplex Method   |       | Reflection                    |
| concepts (integer     |                                  |       | Seatwork and Assignments      |
| LP, transportation    |                                  |       | Use of matrices and graphs in |
| and assignment        |                                  |       | solving MCNF problems         |
| models, network       | 2. The Transportation and        | Week  | Group discussion and          |
| models) and           | Assignment                       | 2 – 3 | presentations                 |
| unconstrained and     | Problem                          |       | Skills exercises              |
| constrained           | 2.1 The Transportation Problem   |       | Student self-assessment and   |
| optimization as       | 2.2 The Assignment Problem       |       | Reflection                    |
| effective tools in    |                                  |       | Seatwork and Assignments      |
| addressing real       | 3. Integer Programming           | Week  | Group discussion and          |
| world problems        | 3.1 Graphical Solution of Two-   | 4 - 7 | presentations                 |
| especially those that | Dimensional Integer Programs     |       | Skills exercises              |
| are relevant to       | 3.2 Branch and Bound Enumeration |       | Student self-assessment and   |
| decision making in    | 3.3 Implicit Enumeration         |       | Reflection                    |
| business, economics   | 3.4 Cutting-Plane Methods        |       | Seatwork and Assignments      |
| and other related     |                                  |       | Use of Mathematica and/or     |

| areas. |                                                                                                                                                                                    |                | Graphmatica in solving IP problems                                                                                                                                                                                                                                       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | <ul> <li>4. Unconstrained Optimization</li> <li>4.1 Golden Mean Search</li> <li>4.2 Method of Steepest Ascent</li> <li>4.3 Gradient Method</li> <li>4.4 Newton's Method</li> </ul> | Week<br>8 - 10 | Group discussion and<br>presentations<br>Skills exercises<br>Student self-assessment and<br>Reflection<br>Seatwork and Assignments<br>Use of Mathematica and/or<br>MS Excel to create simple<br>programs or routines in<br>executing the different<br>methods of solving |
|        | 5. Constrained Optimization                                                                                                                                                        | Week           | Group discussion and                                                                                                                                                                                                                                                     |
|        | 5.1 Lagrange Multiplier                                                                                                                                                            | 11 –           | presentations                                                                                                                                                                                                                                                            |
|        | 5.1.1 An Algebraic Derivation                                                                                                                                                      | 13             | Skills exercises                                                                                                                                                                                                                                                         |
|        | 5.1.2 Geometric Interpretation                                                                                                                                                     |                | Student self-assessment and                                                                                                                                                                                                                                              |
|        | Applications                                                                                                                                                                       |                | Reflection                                                                                                                                                                                                                                                               |
|        | 5.2 1 Necessary and Sufficient                                                                                                                                                     |                | Use of Mathematica in                                                                                                                                                                                                                                                    |
|        | Conditions                                                                                                                                                                         |                | visualizing the optimal                                                                                                                                                                                                                                                  |
|        | 5.2.2 Geometric Interpretation                                                                                                                                                     |                | problem geometrically                                                                                                                                                                                                                                                    |
|        | Applications                                                                                                                                                                       |                |                                                                                                                                                                                                                                                                          |
|        | FINAL EXAMINATION                                                                                                                                                                  | Week           |                                                                                                                                                                                                                                                                          |
|        |                                                                                                                                                                                    | 14             |                                                                                                                                                                                                                                                                          |

### References

Bazaraa, M.S., Jarvis, J.J., Sherali, H.D. (1990) *Linear Programming and Network Flows* (2<sup>nd</sup> ed.) Singapore: Wiley

Ignizio, J.P. and Cavalier, T.M. (1994) Linear Programming. New Jersey: Prentice Hall

Lieberman G. and Hillier.,(2005) Introduction to Operations Research, 8th Edition, Mc-Graw –Hill Science Engineering.

Taha, Hamdy.(2006) Operations Research: An Introduction, 5th edition, Macmillan Publishing Company Winston, W. (2004) Operations Research: Applications and Algorithms (4<sup>th</sup> ed). Belmont, CA: Thomson Brooks/Cole

## Online Resources

<u>www.wolframa/pha.com</u> <u>www.wlu.ca/documents/40644/networksimplex.pdf</u> web.mit.edu/15.053/www/AMP-Chapter09.pdf

#### **Class Policies**

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
  - A. approved absences (where the student concerned officially represented the University at some function or activity).
  - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.

- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

#### DR. ARTURO Y. PACIFICADOR, JR.

Chair, Department of Mathematics

February 2013