

MATH115 – Mathematical Analysis 3 Prerequisite: MATH114

Prerequisite to: MATH116, DIFEQUA

Instructor:_____ Consultation Hours: Contact details:_____ Class Schedule and Room:

_____Clas

Course Description

A continuation of Analysis 2 (MATH114). It covers polar coordinates, indeterminate forms and improper integrals, infinite sequences and series, 3-dimensional space, quadratic surfaces, functions of several variables and evaluation of multiple integrals in Cartesian coordinates.

Learning Outcomes

On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA)

ELGA	Learning Outcome
Critical and Creative Thinker	At the end of the course, the student will be able to
Effective Communicator	sketch the graph of polar curves and quadric surfaces,
Lifelong Learner	calculate the area in polar coordinates, test
Service-Driven Citizen	convergence or divergence of series and illustrate
	power series representation of certain functions.

Final Course Output

As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

Learning Outcome	Required Output	Due Date
At the end of the course, the student will be able to sketch the graph of polar curves and quadric surfaces, calculate the area in polar coordinates, test convergence or divergence of series and illustrate power series representation of certain functions.	Collaborative activity on exploring graphmatica software to polar curve sketching and find application in finding area of region bounded by polar curves. Exploring <i>Mathematica</i> to examine graphs of cylindrical & guadric surfaces.	End of 10 th week
	Activity on power series approximation of certain function values as compared to values generated by scientific calculators	1 week before final exam

Rubric for assessment

CRITERIA	Excellent/4	Satisfactory/3	Developing/2	Needs Improvement/1
Understanding (50%)	The solution shows a deep understanding of the problem including the ability to identify the appropriate mathematical concepts and information necessary for its solution.	The solution shows that student has a broad understanding of the problem and the major concepts necessary for its solution.	The solution is not complete indicating that parts of the problem are not understood.	There is no solution, or the solution has no relationship to the task.
Strategies and Procedures (15%)	Uses a very efficient strategy leading directly to a solution. Applies procedures accurately to correctly solve the problem and verifies the result.	Uses strategy that leads to a solution of the problem. All parts are correct and a correct answer is achieved.	Uses a strategy that is partially useful, leading some way toward a solution but not to a full solution of the problem. Some parts may be correct but a correct answer is not achieved.	No evidence of a strategy or procedure uses strategy that does not help solve the problem.

Communication	There is a clear,	There is a clear	There is some	There is no
(10%)	effective explanation, detailing how the problem is solved. There is a precise and appropriate use of mathematical terminology and notation.	explanation and appropriate use of accurate mathematical representation.	use of appropriate mathematical representation but explanation is incomplete and not clearly presented.	explanation or the solution cannot be understood or it is unrelated to the problem.
Integration (10%)	Demonstrates integration of the concepts presented.	Demonstrates some integration of the concepts presented.	Demonstrates limited integration of the concepts presented.	Demonstrates no integration of the concepts presented.
Accuracy of Computations/ Solutions (15%)	Computations/solutions are correct and explained correctly.	Computations/solutions are correct but not explained well.	Computations /solutions have some errors.	Incorrect computations/ solutions

Additional Requirements At least 4 quizzes, 1 final exam, Seatwork, Assignments, Recitation, Group Work

Grading System

	FOR EXEMPTED		UDENTS	Scale: 95-100% 89-94%	4.0 3.5
	STUDENTS (w/out Final Exam)	with no missed quiz	With one missed quiz	83-88% 78-82% 72-77% 66-71%	3.0 2.5 2.0 1.5
Average of quizzes	95%	65%	55%	60-65%	1.0
Seatwork, Assignment, Learning Output	5%	5%	5%	<60%	0.0
Final exam	-	30%	40%		

Learning Plan						
Learning Outcome	Culminating Topics	Week No.	Learning Activities			
At the end of the course, students will	 I. POLAR GRAPHS Polar Coordinates and Polar Graphs Length of Arc and Areas of a Region for Polar Graphs INDETERMINATE EORMS AND 	Week 1-2 Week	 Introduce polar coordinate system and compare with the rectangular coordinate system Sketch polar graphs and extend some applications of integration to polar curves. Introduce and prove Cauchy's Mean Value Theorem and L'Henitel's Pule 			
apply appropriate mathematical concepts, processes, tools, and technologies in the solution to various conceptual and real-world problems.	 FORMS AND IMPROPER INTEGRALS 2.1 Cauchy's Mean Value Theorem and Indeterminate Form 0/0 2.2 L'Hopital's Rule and Other Indeterminate Forms 2.3 Improper Integrals with Infinite Limits of Integration 2.4 Other Improper Integrals 	3-5	 Value Theorem and L'Hopital's Rule. Discuss different methods of evaluating various indeterminate forms and improper integrals. 			

 III. SEQUENCES AND INFINITE SERIES 3.1 Sequences 3.2 Infinite Series of Constant Terms 3.3 Infinite Series of Positive Terms 3.4 Infinite Series of Positive and Negative Terms 3.5 Summary of Tests for Convergence or Divergence of an Infinite Series 3.6 Power Series 3.7 Differentiation and Integration of Power Series 3.8 Taylor Series and Polynomial Formula 	Week 5-9	 Discuss sequences and their properties. Introduce series as extensions of sequences. Discuss series and its importance in the approximations of transcendental functions by algebraic expressions. Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites analyzemath.com/calculus archives.math.lamar.edu
IV. SURFACES IN SPACE 4.1 Three-Dimensional Space 4.2 Surfaces (Cylindrical and Quadrics)	Week 9-10 (6 hrs)	 Extend the Rectangular Coordinate System to Three Dimensions Discuss equation and graphical representation of cylindrical and quadric surfaces.
V. DIFFERENTIAL CALCULUS OF FUNCTIONS OF MORE THAN ONE VARIABLE 5.1 Functions of More Than One Variable 5.2 Limits and Continuity of Functions of More Than One Variable 5.3 Partial Derivatives 5.4 Differentiability and the Total Differential 5.5 The Chain Rule for Functions of More Than One Variable	Week 11-13 (10 hrs)	 Discuss the concepts of limits, continuity, and derivative of functions of several variables. Highlight the new aspect of differentials in the context of functions of several variables. Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites analyzemath.com/calculus archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu
VI. MULTIPLE INTEGRATION 6.1 Evaluation of Double & Triple Integrals	Week 13 (2 hrs)	 Illustrate the use of iterated integrals to evaluate multiple integrals. Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites analyzemath.com/calculus archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu

References

Anton, H. (2002) Calculus (7th ed.) New York: Wiley

Edwards, C.H. and Penney, D.E. (2008) *Calculus: Early Transcendentals* (7th ed.) Upper Saddle River, NJ: Pearson/Prentice Hall.

Larson, R.E, Hostetler, R. & Edwards, B.H. (2008) *Essential Calculus: Early Transcendental Functions*. Boston: Houghton Mifflin

Leithold, L. (2002) The Calculus 7 (Low Price Edition) Addison-Wesley

Simmons, G.F. (1996) Calculus with Analytic Geometry (2nd ed.) New York: McGraw-Hill

Smith, Robert T., Minton, Roland B. (2012), Calculus , New York : McGraw Hill

Tan, Soo T. (2012) Applied Calculus for the Managerial, Life, and Social Sciences : A Brief Approach, Australia : Brooks/Cole Cengage Learning

Vargerg, D.E., Purcell, E.J. & Rigdon, S.E. (2007) *Calculus* (9th ed) Upper Saddle River, N.J.:Pearson Education International

Online Resources

Free Calculus Tutorials and Problems Accessed October 11, 2012 from http://analyzemath.com/calculus/Visual Visual Calculus Accessed October 11, 2012 from http://analyzemath.com/calculus/Visual Visual Calculus Accessed October 11, 2012 from http://analyzemath.com/calculus/Visual Visual Calculus Accessed October 11, 2012 from http://archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu

Dawkins, P. (2012) Paul's Online Math Notes Accessed October 11, 2012 from http://tutorial.math.lamar.edu

Class Policies

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 - A. approved absences (where the student concerned officially represented the University at some function or activity).
 - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.
- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- 11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

Dr. Arturo Y. Pacificador, Jr. Chair, Department of Mathematics

April, 2014