MATH115 – Mathematical Analysis 3
Prerequisite: MATH114
Prerequisite to: MATH116, DIFEQUA

Instructor: ____________________
Consultation Hours: ____________
Contact details: ______________
Class Schedule and Room: _______

Course Description
A continuation of Analysis 2 (MATH114). It covers polar coordinates, indeterminate forms and improper integrals, infinite sequences and series, 3-dimensional space, quadratic surfaces, functions of several variables and evaluation of multiple integrals in Cartesian coordinates.

Learning Outcomes
On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA)

<table>
<thead>
<tr>
<th>ELGA</th>
<th>Learning Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical and Creative Thinker</td>
<td>At the end of the course, the student will be able to sketch the graph of polar</td>
</tr>
<tr>
<td>Effective Communicator</td>
<td>coordinates and quadric surfaces, calculate the area in polar coordinates, test</td>
</tr>
<tr>
<td>Lifelong Learner</td>
<td>convergence or divergence of series and illustrate power series representation of</td>
</tr>
<tr>
<td>Service-Driven Citizen</td>
<td>certain functions.</td>
</tr>
</tbody>
</table>

Final Course Output
As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>Required Output</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the course, the student will be able to sketch the graph of polar</td>
<td>Collaborative activity on exploring graphmatica software to polar curve</td>
<td>End of 10th week</td>
</tr>
<tr>
<td>coordinates and quadric surfaces, calculate the area in polar coordinates, test</td>
<td>sketching and find application in finding area of region bounded by</td>
<td></td>
</tr>
<tr>
<td>convergence or divergence of series and illustrate power series representation of</td>
<td>polar curves. Exploring Mathematica to examine graphs of cylindrical &</td>
<td></td>
</tr>
<tr>
<td>certain functions.</td>
<td>quadric surfaces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activity on power series approximation of certain function values as</td>
<td>1 week before final</td>
</tr>
<tr>
<td></td>
<td>compared to values generated by scientific calculators</td>
<td>exam</td>
</tr>
</tbody>
</table>

Rubric for assessment

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>Excellent/4</th>
<th>Satisfactory/3</th>
<th>Developing/2</th>
<th>Needs Improvement/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding (50%)</td>
<td>The solution shows a deep understanding of the problem including the ability to identify the appropriate mathematical concepts and information necessary for its solution.</td>
<td>The solution shows that student has a broad understanding of the problem and the major concepts necessary for its solution.</td>
<td>The solution is not complete indicating that parts of the problem are not understood.</td>
<td>There is no solution, or the solution has no relationship to the task.</td>
</tr>
<tr>
<td>Strategies and Procedures (15%)</td>
<td>Uses a very efficient strategy leading directly to a solution. Applies procedures accurately to correctly solve the problem and verifies the result.</td>
<td>Uses strategy that leads to a solution of the problem. All parts are correct and a correct answer is achieved.</td>
<td>Uses a strategy that is partially useful, leading some way toward a solution but not to a full solution of the problem. Some parts may be correct but a correct answer is not achieved.</td>
<td>No evidence of a strategy or procedure uses strategy that does not help solve the problem.</td>
</tr>
</tbody>
</table>
Communication (10%)
- There is a clear, effective explanation, detailing how the problem is solved.
- There is a precise and appropriate use of mathematical terminology and notation.
- There is a clear explanation and appropriate use of accurate mathematical representation.
- There is some use of appropriate mathematical representation but explanation is incomplete and not clearly presented.
- There is no explanation or the solution cannot be understood or it is unrelated to the problem.

Integration (10%)
- Demonstrates integration of the concepts presented.
- Demonstrates some integration of the concepts presented.
- Demonstrates limited integration of the concepts presented.
- Demonstrates no integration of the concepts presented.

Accuracy of Computations/Solutions (15%)
- Computations/solutions are correct and explained correctly.
- Computations/solutions are correct but not explained well.
- Computations/solutions have some errors.
- Incorrect computations/solutions

Additional Requirements
At least 4 quizzes, 1 final exam, Seatwork, Assignments, Recitation, Group Work

Grading System

<table>
<thead>
<tr>
<th>Scale</th>
<th>0.0</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-100%</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89-94%</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83-88%</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-82%</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-77%</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66-71%</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-65%</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60%</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOR EXEMPTED STUDENTS (w/out Final Exam)</th>
<th>FOR STUDENTS with FINAL EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>with no missed quiz</td>
<td>With one missed quiz</td>
</tr>
<tr>
<td>Average of quizzes</td>
<td>95%</td>
</tr>
<tr>
<td>Seatwork, Assignment, Learning Output</td>
<td>5%</td>
</tr>
<tr>
<td>Final exam</td>
<td>-</td>
</tr>
</tbody>
</table>

Learning Plan

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>Culminating Topics</th>
<th>Week No.</th>
<th>Learning Activities</th>
</tr>
</thead>
</table>
| I. POLAR GRAPHS | 1.1 Polar Coordinates and Polar Graphs | Week 1-2 | - Introduce polar coordinate system and compare with the rectangular coordinate system
- Sketch polar graphs and extend some applications of integration to polar curves. |
| | 1.2 Length of Arc and Areas of a Region for Polar Graphs | | |
| II. INDETERMINATE FORMS AND IMPROPER INTEGRALS | 2.1 Cauchy’s Mean Value Theorem and Indeterminate Form 0/0 | Week 3-5 | - Introduce and prove Cauchy’s Mean Value Theorem and L'Hopital’s Rule.
- Discuss different methods of evaluating various indeterminate forms and improper integrals. |
| | 2.2 L’Hôpital’s Rule and Other Indeterminate Forms | | |
| | 2.3 Improper Integrals with Infinite Limits of Integration | | |
| | 2.4 Other Improper Integrals | | |
III. SEQUENCES AND INFINITE SERIES

3.1 Sequences
3.2 Infinite Series of Constant Terms
3.3 Infinite Series of Positive Terms
3.4 Infinite Series of Positive and Negative Terms
3.5 Summary of Tests for Convergence or Divergence of an Infinite Series
3.6 Power Series
3.7 Differentiation and Integration of Power Series
3.8 Taylor Series and Polynomial Formula

Week 5-9
- Discuss sequences and their properties.
- Introduce series as extensions of sequences.
- Discuss series and its importance in the approximations of transcendental functions by algebraic expressions.
- Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites:
 - analyzemath.com/calculus
 - archives.math.utk.edu/visual.calculus
 - tutorial.math.lamar.edu

IV. SURFACES IN SPACE

4.1 Three-Dimensional Space
4.2 Surfaces (Cylindrical and Quadrics)

Week 9-10
6 hrs
- Extend the Rectangular Coordinate System to Three Dimensions
- Discuss equation and graphical representation of cylindrical and quadric surfaces.

V. DIFFERENTIAL CALCULUS OF FUNCTIONS OF MORE THAN ONE VARIABLE

5.1 Functions of More Than One Variable
5.2 Limits and Continuity of Functions of More Than One Variable
5.3 Partial Derivatives
5.4 Differentiability and the Total Differential
5.5 The Chain Rule for Functions of More Than One Variable

Week 11-13
10 hrs
- Discuss the concepts of limits, continuity, and derivative of functions of several variables.
- Highlight the new aspect of differentials in the context of functions of several variables.
- Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites:
 - analyzemath.com/calculus
 - archives.math.utk.edu/visual.calculus
 - tutorial.math.lamar.edu

VI. Multiple Integration

6.1 Evaluation of Double & Triple Integrals

Week 13
2 hrs
- Illustrate the use of iterated integrals to evaluate multiple integrals.
- Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites:
 - analyzemath.com/calculus
 - archives.math.utk.edu/visual.calculus
 - tutorial.math.lamar.edu

FINAL EXAMINATION

(3 hrs)

References

Online Resources

tutorial.math.lamar.edu

Class Policies

1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 A. approved absences (where the student concerned officially represented the University at some function or activity).
 B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
7. Learning outputs are required and not optional to pass the course.
8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.
9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

Dr. Arturo Y. Pacificador, Jr.
Chair, Department of Mathematics

April, 2014