

DE LA SALLE UNIVERSITY

College of Science

MATH114 – Analysis 2

Prereguisite: MATH112, MATH113	Prerequisite to: MATH115, LINEALG
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Instructor:	Contact details:
Consultation Hours:	Class Schedule and Room:

Course Description

This second course in analysis covers differentiation and integration of exponential, logarithm and trigonometric functions; the concepts of the definite and indefinite integral and some applications of the definite integral.

Learning Outcomes On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA) ELGA Learning Outcome Critical and Creative Thinker At the end of the course, the student will be able to

ELGA	Learning Outcome
Critical and Creative Thinker	At the end of the course, the student will be able to
Effective Communicator	apply differentiation of transcendental functions,
Lifelong Learner	indefinite and definite integration in solving various
Service-Driven Citizen	conceptual and real-world problems.

Final Course Output

As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

Learning Outcome	Required Output	Due Date
At the end of the course, the student will be	Collaborative activity on utilizing	1 week
able to apply differentiation of transcendental	definite integration in finding area of a	before final
functions, indefinite and definite integration	plane region, the volume of a solid of	exam
in solving various conceptual and real-world	revolution, length of arc and solving	
problems.	work problems.	

Rubric for assessment

CRITERIA	Excellent/4	Satisfactory/3	Developing/2	Needs Improvement/1
Understanding (50%)	The solution shows a deep understanding of the problem including the ability to identify the appropriate mathematical concepts and information necessary for its solution.	The solution shows that student has a broad understanding of the problem and the major concepts necessary for its solution.	The solution is not complete indicating that parts of the problem are not understood.	There is no solution, or the solution has no relationship to the task.
Strategies and Procedures (15%)	Uses a very efficient strategy leading directly to a solution. Applies procedures accurately to correctly solve the problem and verifies the result.	Uses strategy that leads to a solution of the problem. All parts are correct and a correct answer is achieved.	Uses a strategy that is partially useful, leading some way toward a solution but not to a full solution of the problem. Some parts may be correct but a correct answer is not achieved.	No evidence of a strategy or procedure uses strategy that does not help solve the problem.
Communication (10%)	There is a clear, effective explanation, detailing how the problem is solved. There is a precise and appropriate use of mathematical terminology and notation.	There is a clear explanation and appropriate use of accurate mathematical representation.	There is some use of appropriate mathematical representation but explanation is incomplete and not clearly presented.	There is no explanation or the solution cannot be understood or it is unrelated to the problem.

Integration (10%)	Demonstrates integration of the concepts presented.	Demonstrates some integration of the concepts presented.	Demonstrates limited integration of the concepts presented.	Demonstrates no integration of the concepts presented.	
Accuracy of Computations/ Solutions (15%)	Computations/solutions are correct and explained correctly .	Computations/solutions are correct but not explained well.	Computations/solutions have some errors.	Incorrect computations/ solutions	

Additional Requirements
At least 4 quizzes, 1 final exam, Seatwork, Assignments, Recitation, Group Work

Gradin	n Sı	/stem
Graum	y U	JULIII

	FOR EXEMPTED		TUDENTS NAL EXAM
	STUDENTS	with	With
	(w/out Final	no missed	one missed
	Exam)	quiz	quiz
Average of quizzes	95%	65%	55%
Seatwork, Assignment,	5%	5%	5%
Learning Output			
Final exam	-	30%	40%

Scale:		
95-100%	4.0	
89-94%	3.5	
83-88%	3.0	
78-82%	2.5	
72-77%	2.0	
66-71%	1.5	
60-65%	1.0	
<60%	0.0	

Learning Outcome	Culminating Topics	Week No.	Learning Activities
At the end of the course, the students will apply appropriate mathematical concepts, processes, tools, and technologies in the solution to various conceptual and real-world problems.	I. THE DEFINITE INTEGRAL AND INTEGRATION 1.1 The Differential 1.2 Anti-differentiation 1.3 Some Techniques of Anti-differentiation 1.4 The Definite Integral and Area 1.6 Mean Value Theorem for Integral 1.5 The Fundamental Theorem of the Calculus (proof)	Week 1-3 (10 hrs)	 Discuss approximations using differentials. Define Anti-derivative. Establish basic anti-derivative formulas. Set up the geometric interpretation of the definite integral. Relate the concept between derivative and definite integral. Expose students to mathematical proofs in establishing results.
	II. APPLICATIONS OF THE DEFINITE INTEGRALS 2.1 Area of a Plane Region 2.2 Volumes of Solids by Slicing, Disks and Washers 2.3 Volumes of Solids by Cylindrical Shells 2.4 Length of Arc of the Graph of a Function 2.5 Work (spring and pumping problem)	Week 3-5 (10 hrs)	 Present graphical interpretation of the applications of definite integrals. (Area, Volumes. Length of Arc, Work) Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites analyzemath.com/calculus archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu

III. DERIVATIVES OF ELEMENTARY TRANSCENDENTAL FUNCTIONS 3.1 The Inverse of a Functions (review) 3.2 Logarithmic Functions and their Derivatives 3.3 Logarithmic Differentiation 3.4 Exponential Functions and their Derivatives 3.5 Derivatives of Inverse Trigonometric Functions 3.6 Hyperbolic Functions		 Discuss various transcendental functions and their derivatives. Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites analyzemath.com/calculus archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu
and their Derivatives IV. INTEGRALS OF TRANSCENDENTAL FUNCTIONS 4.1 Integral Yielding the Natural Logarithmic Function 4.2 Integral of Exponential Functions 4.3 Integral of Trigonometric Functions 4.4 Integrals Yielding Inverse Trigonometric Functions	Week 8-10 (10 hrs)	Discuss integrals of transcendental functions Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites analyzemath.com/calculus archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu
V. TECHNIQUES OF INTEGRATION 5.1 Integration by Parts 5.2 Trigonometric Integrals (Powers of Sine, Cosine Tangent, Cotangent Secant and Cosecant) 5.3 Integration of Algebraic Functions by Trigonometric Substitution 5.4 Integration of Rational Functions by Partial Fractions		Discuss the need for special techniques of integration. Pre-discussion exercises, instruction add-ons and practice exercises may be taken from the following sites analyzemath.com/calculus archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu
VI. PARAMETRIC EQUATIONS 6.1 Parametric Equations and Plane Curves 6.2 Length of Arc of a Plane Curves	Week 13 (4 hrs)	 Define parametric equations and show its equivalent in Cartesian form. Discuss derivative of parametric equations and its application in finding length of arc of curve in parametric form.
FINAL EXAMINATION	(3 hrs)	

References

Anton, H. (2002) Calculus (7th ed.) New York: Wiley

Edwards, C.H. and Penney, D.E. (2008) *Calculus: Early Transcendentals* (7th ed.) Upper Saddle River, NJ: Pearson/Prentice Hall.

Larson, R.E, Hostetler, R. & Edwards, B.H. (2008) Essential Calculus: Early Transcendental Functions.

Boston: Houghton Mifflin

Leithold, L. (2002) The Calculus 7 (Low Price Edition) Addison-Wesley

Simmons, G.F. (1996) Calculus with Analytic Geometry (2nd ed.) New York: McGraw-Hill

Smith, Robert T., Minton, Roland B. (2012), Calculus, New York: McGraw Hill

Tan, Soo T. (2012) Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach, Australia: Brooks/Cole Cengage Learning

Vargerg, D.E., Purcell, E.J. & Rigdon, S.E. (2007) *Calculus* (9th ed) Upper Saddle River, N.J.:Pearson Education International

Online Resources

Free Calculus Tutorials and Problems Accessed October 11, 2012 from http://analyzemath.com/calculus/ Visual Calculus Accessed October 11, 2012 from http://archives.math.utk.edu/visual.calculus tutorial.math.lamar.edu

Dawkins, P. (2012) Paul's Online Math Notes Accessed October 11, 2012 from http://tutorial.math.lamar.edu

Class Policies

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 - A. approved absences (where the student concerned officially represented the University at some function or activity).
 - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other pre-final course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class
- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- 11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

Dr. Arturo Y. Pacificador, Jr.Chair, Department of Mathematics