

DE LA SALLE UNIVERSITY College of Science Department of Mathematics

LIMOBAP – Linear Models for Business Applications Prerequisite: INTSTA2 or LINEALG

Prerequisite to:

Instructor: _____ Consultation Hours: _

Contact details: _____ Class Schedule and Room: ____

Course Description

A study of the various linear statistical models that arise in practice. Topics include multivariate normal distribution, distribution of quadratic forms, general linear models, estimation and tests of hypotheses about linear hypotheses and design matrices giving rise to analysis of variance models.

Learning OutcomesOn completion of this course, the student is expected to present the following learning outcomes in line with
the Expected Lasallian Graduate Attributes (ELGA)ELGALearning OutcomeCritical and Creative Thinker
Effective Communicator
Lifelong Learner
Service-Driven CitizenAt the end of the course, the student will perform regression
analysis; apply appropriate statistical concepts, processes, tools,
and technologies in solving various conceptual and real-world
problems.

Final Course Output

As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

Learning Outcome	Required Output	Due Date
At the end of the course, the student will perform regression analysis; apply appropriate statistical concepts, processes, tools, and technologies in solving various conceptual and real-world problems.	An inquiry-based group project highlighting the use of regression analysis in different problem situations encountered in the real world.	Week 13

Rubric for assessment

The following rubric will be used for grading students' rewritten solutions. The new quiz score will be obtained by adding ORIGINAL QUIZ SCORE and 20% of the REWRITTEN SCORE. Note that students will only rewrite items that they did not get perfectly.

CRITERIA	Excellent (4)	Good (3)	Satisfactory (2)	Needs Improvement (1)
Formulation	Research problem	Research problem	Research problem is	Research
of the Research	and objectives are clearly defined and	and objectives are clearly defined and	clearly defined but some objectives are	problem and objectives are
Problem and	significant;	significant.	insignificant.	vague and
Objectives (10%)	demonstrates evidence that the research problem was researched and			insignificant.
	designed well.			
Correct Application of the Statistical Concepts (35%)	Statistical analyses are appropriate with correct interpretations and relevant conclusions.	Statistical analyses are appropriate with correct interpretations.	Some statistical analyses are inappropriate.	Statistical analyses are inappropriate.
Depth of	The analysis	The analysis	The analysis has	The analysis
Analysis (30%)	convinces the reader about the wisdom of conclusions,	engages the reader to appreciate the wisdom of conclusions,	limited ideas that do not explain the wisdom of conclusions,	has incorrect ideas and conclusions.
	implications and	implications and	implications and	

	consequences on	consequences on the	consequences on	
	the basis of	basis of statistical	the basis of	
	statistical methods	methods and	statistical methods	
	and findings.	findings.	and findings.	
Clarity and	Written report is	Written report is	Written report is	Written report
Organization	organized logically	organized logically	organized and some	is not
of Written	and presented	and presented	discussions are not	organized.
Report (10%)	clearly with effective	clearly.	clear.	
	transitions.			
Oral	Overall presentation	Overall presentation	Overall presentation	Overall
Presentation	is creative and well	is creative and well	is organized.	presentation is
(15%)	organized with	organized.	-	not organized.
- *	innovative ideas.	-		

Additional Requirements

- Quizzes •
- Class Participation (seatwork and group exercises, homework, recitation) Computer hands-on exercises using SAS •
- •
- Final Examination

Grading System

				Scale: 95-100%	4.0
	FOR EXEMPTED		TUDENTS NAL EXAM	89-94% 83-88%	4.0 3.5 3.0
	STUDENTS (w/out Final Exam)	with no missed quiz	With one missed quiz	78-82% 72-77% 66-71%	3.0 2.5 2.0 1.5
Average of quizzes & Project	86%	60%	50%	60-65% <60%	1.0 0.0
Class participation & Lab exercises	14%	10%	10%		
Final exam	-	30%	40%	1	

Learning Plan

LEARNING OUTCOME	ТОРІС	WEEK NO.	LEARNING ACTIVITIES
At the end of the course, the student	1. Simple Linear Regression 1.1 The Problem and	12 hours / Weeks 1-4	Prior knowledge and beliefs
will perform regression analysis, apply appropriate	Motivation Behind Curve Fitting 1.2 Model Assumptions	WEEKS 1-4	survey Concept mapping Library work Group discussion and
statistical concepts, processes, tools, and technologies in solving various	1.3 Overview of Method of Estimation1.4 Hypothesis Testing and Confidence Intervals for		presentations Computer laboratory activity (SAS) Skills exercises
conceptual and real- world problems.	 β₀ and β₁ 1.5 Correlation: Inference and Relationship to Simple Linear Regression Model 		Student self-assessment and reflection
	Quiz No. 1	1.5 hours / Week 5	
	2. Measures of Model	4.5 hours /	

1	
Adequacy	Weeks 5-6
2.1 Tests for Linearity	
2.2 Tests for Normality	
2.3 Tests for	
Homoscedasticity	
2.4 Tests for	
Independence	
2.5 Outliers Deletion	
2.6 Transformations	
Quiz No. 2	1.5 hours /
	Week 7
2 Multiple Lincon Decreasion	
3. Multiple Linear Regression	12 hours /
3.1 Motivation: Real-world	Weeks 7-
examples	11
3.2 The Multiple	
Regression Model and	
its Assumptions	
3.3 Estimation of	
Parameters	
3.4 Using the Model to	
Make Predictions	
3.5 Hypothesis Testing and	
Confidence Intervals	
for β_i	
-	
3.6 Full versus Reduced	
Model: The F Test	
4. Variable Selection and	3 hours /
Model Building	Weeks 11-
4.1 Criteria for Selecting	12
Appropriate Models:	
MSE, C _p , and adjusted	
R ²	
4.2 Forward Selection,	
Backward Elimination	
and Stepwise	
Selection Procedures	
Quiz No. 3	1.5 hours /
Quiz No. 5	
	Week 12
5. Issues in Regression	1.5 hours /
Modeling (Optional)	Week 13
Inquiry-based Group Project	1.5 hours /
	Week 13
Final Examination	2 hours /
	Week 14

References

Bapat, R. B. (2012) *Linear algebra and linear models*. New Delhi: Hindustan Book Agency/Springer. Christensen, R. (2011). *Plane answers to complex questions [electronic resource]: The theory of linear*

Christensen, R. (2011). Plane answers to complex questions [electronic resource]: The theory of linear models. New York, NY: Springer New York.

Dielman, T.E. (2005). Applied regression analysis: a second course in business and economic statistics (4th ed.). Belmont, CA: Brooks/Cole.

Draper, N.P., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: Wiley.

Freedman, D. (2009). Statistical models: theory and practice. Cambridge: Cambridge University Press.

Kahane, L. H. (2008). Regression basics. Los Angeles: Sage Publications.

Montgomery, D.C. & Peck, E.A. (1992). *Introduction to linear regression analysis* (2nd ed.). New York: Wiley. Neter, J., Kutner, M., Wasserman, W., & Nachtsheim, C. (1996). *Applied linear regression models* (3rd ed.). Chicago: Irwin.

Neter, J., Kutner, M., Wasserman, W., & Nachtsheim, C. (1996). *Applied linear statistical models* (4th ed.). Chicago: Irwin.

Yan, X. (2009). Linear regression analysis: theory and computing. Hackensack, NJ: World Scientific.

Online Resources

Big Data Analytics, Enterprise Analytics, Data Mining Software, Statistical Analysis, Predictive Analytics. Accessed October 15, 2012 from:<u>http://www/statsoft.com</u>

Chen, X., Ender, P., Mitchell, M. and Wells, C. (2003). *Regression with SAS*, Accessed October 24, 2012 from: <u>http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.htm</u>.

Regression Applet. Accessed October 24, 2012 from http://www.stat.sc.edu/~west/javahtml/Regression.html Lock, R.H. (1998) WWW Resources for Teaching Statistics. Accessed October 24, 2012 from: http://it.stlawu.edu/~rlock/tise98/onepage.html

Class Policies

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 - A. approved absences (where the student concerned officially represented the University at some function or activity).
 - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.
- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- 11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

DR. ARTURO Y. PACIFICADOR, JR.

Chair, Department of Mathematics