

INTOSET – Introduction to Set Theory

Prerequisite:

Prerequisite to: MODEALG, LINEALG

Instructor:_____ Consultation Hours:____

Contact details:____ Class Schedule and Room:____

Course Description

This is a course covering the principles of symbolic logic, valid arguments and methods of proof; axioms on sets, algebra of sets; relations and functions, the natural numbers finite and infinite sets, cardinal numbers.

Learning Outcomes

On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA)

ELGA	Learning Outcome
Critical and Creative Thinker	At the end of the course, the student will apply the principles of logic to tell sound from upsound reasoning in everyday discourse, and
Lifelong Learner	apply appropriate set theoretic concepts, thinking processes, tools
	problems.

Final Course Output

As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

Learning Outcome	Required Output	Due Date
 Apply the principles of logic to tell sound from unsound reasoning in everyday discourse, and apply appropriate set theoretic concepts, thinking processes, tools and technologies in the solution to various conceptual or real-world problems. 	 Any one of the following: 1) A short script (similar to the conversation held at the Mad Hatter's Tea Party in Chapter 7 of Alice's Adventures in Wonderland) showing both good and deliberately poor logic, with an analysis of the validity or invalidity of the arguments in the script. 	Week 13
	 Newspaper clippings, or record of radio/TV interviews of government officials, policy- makers and famous personalities containing valid or invalid arguments, with a proof of validity or invalidity using symbolic logic or set theory. 	

Rubric for assessment				
Script				
CRITERIA	Excellent (4)	Good (3)	Satisfactory (2)	Needs Improvement (1)
Logic Content and Analysis (50%)	The script contains in- depth analysis and insightful comments in addition to score 3 performance.	The script contains a variety of valid or invalid arguments and inferences, with correct proofs.	The script contains few valid or invalid arguments and inferences with correct proofs.	The script contains few valid or invalid arguments and inferences, with errors in their proofs.
Creativity (30%)	The script reflects the students' creative expression and imagination in addition to score 3 performance.	The script has an interesting/amusing storyline that is easy to understand and follow.	.The script is easy to understand and follow but has few interesting details.	The script is not easy to understand.

Newspaper Clippings

Criteria	Excellent	Satisfactory	Developing	Needs
	4	3	2	Improvement
				. 1
Logic Content	The work contains	The work contains	The work contains	The work contains
and Analysis	in-depth analysis	a variety of valid or	few valid or invalid	few valid or invalid
(50%)	and insightful	invalid arguments	arguments and	arguments and
	comments in	and inferences,	inferences with	inferences, with
	addition to score 3	with correct	correct proofs.	errors in their
	performances.	proofs.		proofs.
Organization	The writing	The writing is	The writing is clear	The writing is
(30%)	contains inputs of	clear, logical, and	but lacks logical	vague or
	original ideas in	coherent.	flow or coherence.	ambiguous and
	addition to score 3			lacks logical flow
	performance.			of ideas.
Grammar,	The work contains	The work contains	The work contains	The work contains
Spelling	appropriate	no errors in	at most 3 errors in	more than 3 errors
(10%)	language in	grammar and	grammar and	in grammar and
	addition to score 3	spelling.	spelling.	spelling.
	performance.			
Bibliography	Multiple and varied	All resources cited	Some of the	Majority of the
(10%)	citations are given		resources not	resources not
	in addition to score		cited	cited
	3 performance.			

Additional Requirements

- Quizzes
- Final Examination
- Seatwork, Assignment, Recitation, Homework

Grading System

	FOR	EOD ST		Scale: 95-100%	40
	EXEMPTED	with FI	NAL EXAM	89-94% 83-88%	3.5 3.0
	(w/out Final Exam)	with no missed quiz	With one missed quiz	78-82% 72-77% 66-71%	2.5 2.0 1.5
Average of quizzes & Project	95%	60%	50%	60-65% <60%	1.0 0.0
Class participation & Lab exercises	5%	10%	10%		
Final exam	-	30%	40%	1	

Learning Plan

Learning Outcome	Торіс	Week No.	Learning Activities
At the end of the course, the student	I. SYMBOLIC LOGIC		Prior knowledge/beliefs survey
will apply the principles of logic to tell sound from	A. Fundamentals and Algebra of Logic	Week 1	Problem solving Skills exercises Group/Class discussion
unsound reasoning in everyday discourse,	1. Propositions and Logical Operators		Library work
and apply appropriate set theoretic concepts,	2. Tautology, Contradiction and Contingency		
thinking processes,	3. Rules of Replacement		

tools and technologies			
in the solution to	B. Arguments	Week 2-3	
various conceptual or	1. Valid and Invalid Arguments		
real-world problems	2. Rules of Inference		
	3. Rule of Conditional Proof		
	4. Rule of Indirect Proof		
	QUIZ 1		
	C. Quantification Theory	Week 4-5	Prior knowledge and
			beliefs survey
	1. Propositional		Problem solving
	Functions		Skills exercises
	2. Quantification		Group/Class discussion
	Negation		Library work
	3. Quantification Rules		
	4. Proving Validity of		
	Arguments Involving		
	Quantifiers		
	II. METHODS OF PROOF	Week 6-7	Prior knowledge and
			beliefs survey
	1. Proving an Implication		Problem solving
	2. Proving a Biconditional		Skills exercises
	3. Proving Existence		Group/Class discussion
	4. Proving Uniqueness		Library work
			Prior knowledge and
			beliefs survey
	A Sets Equivalence	Week 8-	Problem solving
	Relations and	11	Skills exercises
	Functions		Group/Class discussion
	T directoris		Library work
	1. Set. Subset. Equality of Sets		
	2. Set Operations (Union.		
	Intersection, Complement,		
	Difference, Cartesian Product)		
	3. Algebra of Sets		
	4. Indexed Families of Sets		
	5. Equivalence Relations and		
	Partitions		
	6. Functions (Injective, Surjective,		
	Bijective)		
	7. Composition of Functions		
	QUIZ 3		
	B. Finite and Infinite Sets		
	1. Definition of Natural Numbers	Week 12-	
	2. Ordering of the Natural	13	
	Numbers		
	3. Mathematical Induction		
	4. Finite and Infinite Sets		
	5. Countable Sets		
	6. Cardinal Numbers		
	7. Continuum Hypothesis		
	FINAL EXAMINATION	2 hours	

References

Bloch E.,(2000) Proofs and Fundamentals, A First Course in Abstract Mathematics. Boston:Birkhauser
Cupillari A., (1989) Nuts and Bolts of Proofs. Belomont, Calif: Wadworth Pub.
Copi I., (1979). Symbolic Logic (5th Edition).Prentice Hall
Eccles P. (1998). An Introduction to Mathematical Reasoning. Cambridge University Press
Gerstein L.,(1996). Introduction to Mathematical Structures and Proofs. NY: Springer
Lin, Y. and Lin, S. (1998) Set Theory An Intuitive Approach, Korea: Kyung Moon Publishers.
Lipschultz S., (1999). Set Theory and Related Topics, Schaum's Outline Series. Singaore: Mcgraw Hill

Namilton and Landin, (1962). Set Theory and the Structure of Arithmetic. Allyn and Bacon Pinter C., (1971). Set Theory. Taipei-Taiwan: Mei YA Publication

Rubin J., (1967) Set Theory for the Mathematician. San Francisco: Holden Day

Schumacha Carol., (2001). Chapter Zero, *Fundamental Notions of Abstract Mathematics (2nd Edition)* Boston: Addison-Wesley

Solow D., (2002) How to Read and Do Proofs, An Introduction to Mathematical Thought Processes. N. Y.: Wiley

Vellemen D., (1994). *How to Prove It, A Structured Approach*. Cambridge: Cambridge University Press Rotman J., (2007). *Journey into Mathematics, An Introduction to Proofs*. Mineola, N.Y. :Dover Publication Inc.

Online Resources

Introduction to Reasoning. Accessed October 10, 2012 from:

http://www.cs.odu.edu/~toida/nerzic/content/logic/prop_logic/tautology/tautology.html *Proof Techniques.* Accessed October 10, 2012 from:

http://nicolas.thiery.name/macs358/Notes/2_Proofs/ProofTechniques.html *Proof.* Accessed October 10, 2012 from:

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/node18.html

Hutchings, M. Introduction to Mathematical Arguments Accessed October 10, 2012 from:

http://math.berkeley.edu/~hutching/teach/113/proofs.pdf

Class Policies

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 - A. approved absences (where the student concerned officially represented the University at some function or activity).
 - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.
- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- 11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

Dr. Arturo Y. Pacificador, Jr.

Chair, Department of Mathematics