DE LA SALLE UNIVERSITY - MANILA Mathematics Department SYLLABUS

COURSE CODE/TITLE COURSE CREDIT TYPE OF COURSE FACULTY TERM/TIME/ROOM	:	GRAPTHE (Graph Theory) 3 units Major Course for Science Students	
COURSE DESCRIPTION	:	An introductory course in graph theoretic concepts which include connectivity, trees, traversability, factorizations, planarity, colorability. Applications in operations research and computer sciences as well as open problems are also discussed.	
COURSE OBJECTIVES		:	

- To make students aware that graphs are mathematical models for some real-life 1. situations.
- 2. To give the students a knowledge of basic concepts which will be enable them to appreciate both the theory and the applications of graph theory.
- 3. To demonstrate to the students that many problems - theoretical or real life-, can be analyzed and solved using graphs.
- 4. To develop the skill of translating problems to graph-theoretic problems and interpreting the solution in terms of the real situation.

VALUE AIMS

- 1. To develop the skill of solving graph-theoretic problems using known results and basic concepts in graph theory.
- To encourage interaction and cooperation among students through problem sets 2. assigned to students.
- 3. To develop the ability to perform independent analysis and reasoning.

REFERENCES

Chartrand, G., Graphs as Mathematical Models, Prindle, Weber & Schmidt, Inc., 1977

Harary, F., Graph Theory, Addison-Wesley, 1961

TEACHING METHODS AND STRATEGIES:

- 1. Lecture
- 2. Recitation
- 3. Individual Seatwork on Problem Solving

1

Cooperative or Group Learning 4.

ASSESSMENT / EVALUATION:

Quizzes and Long Exams	70%
Final Exam	30%
Passing Grade	60%

GRADING SCALE:

95-100	4.0
89-94	3.5
83-88	3.0
78-82	2.5
72-77	2.0
66-71	1.5
60-65	1.0
Below 60	0.0

COURSE			TIME ALLOTMENT		
1.	DIGRAPI	IS	9 HRS		
	1.1 1.2 1.3 1.4 1.5	Walk, Path and Circuit			
2.	MULTIDIGRAPHS		6 HRS		
	2.1 2.2 2.3				
3.	UNDIREC	12 HRS			
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Simple Graph, Multigraph Walk, Path and Cycle Connected Graph, Components of a Graph Regular Graphs, Platonic Solids Adjacency Matrix Complement Isomorphism and Automorphism QUIZ 2			
4.	SUBGRAPHS		3 HRS		
	4.1 4.2 4.3				
5.	SOME CLASSES OF GRAPHS		9 HRS		
	5.1 5.2 5.3 5.4 5.5	Tree Complete Graph, Complete Bipartite Graph Path, Cycle, Wheel Hamiltonian Graphs Eulerian Graphs QUIZ 3			
6.	6. SOME GRAPH INVARIANTS		3 HRS		
	6.1 6.2 6.3	Independence Number Dominance Number Chromatic Number			
FINAL EXAMINATION					
