

DE LA SALLE UNIVERSITY College of Science Department of Mathematics

EXPEDES – Experimental Design Analysis Prerequisite: LINMODE

Prerequisite to:

Instructor: Consultation Hours:

Contact details: Class Schedule and Room:

Course Description

This is an introductory course on the design and analysis of experiments. It deals with planning and conducting experiments and about analyzing the resulting data so that valid and objective conclusions are obtained.

Learning Outcomes

On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA)

ELGA	Learning Outcome
Critical and Creative Thinker	At the end of the course, the student will apply
Effective Communicator	appropriate statistical concepts, processes, tools, and
Reflective Lifelong Learner	technologies in the solution to various conceptual and
Service-driven Citizen	real-world problems.

Final Course Output

As evidence of attaining the above learning outcomes, the student is required to do and submit the following during the indicated dates of the term.

Learning Outcome	Required Output	Due Date
At the end of the course, the student will apply	An inquiry-based individual and group	Week 13
appropriate statistical concepts, processes,	presentations highlighting the	
tools, and technologies in the solution to	appropriate usage of experimental	
various conceptual and real-world problems.	design methods using real empirical	
	data	

Rubric for assessment

CRITERIA	Excellent (4)	Good (3)	Satisfactory (2)	Needs Improvement (1)
Formulation of the Research Problem and Objectives (10%)	Research problem and objectives are clearly defined and significant; Demonstrates evidence that the research problem was researched and designed well.	Research problem and objectives are clearly defined and significant.	Research problem is clearly defined but some objectives are insignificant.	Research problem and objectives are vague and insignificant.
Correct Application of the Statistical Concepts (35%)	Statistical analyses are appropriate with correct interpretations and relevant conclusions.	Statistical analyses are appropriate with correct interpretations.	Some statistical analyses are inappropriate.	Statistical analyses are inappropriate
Analysis (30%)convinces the reader about the wisdom of conclusions, implications and consequences on the basis of statisticalengages the to appreciat wisdom of conclusions implications		The analysis engages the reader to appreciate the wisdom of conclusions, implications and consequences on the basis of	The analysis have limited ideas that do not explain the wisdom of conclusions, implications and consequences on the basis of	The analysis has incorrect ideas and conclusions.

		statistical methods and findings	statistical methods and findings	
Clarity and Organization of Written Report (10%)	Written report is organized logically and presented clearly with effective transitions.	Written report is Written report is organized logically organized and some		Written report is not organized.
Oral Presentation (15%)	Overall presentation is creative and well organized with innovative ideas.	Overall presentation is creative and well organized.	Overall presentation is organized	Overall presentation is not organized

Additional Requirements

Aside from the final output, the student will be assessed at other times during the term by the following: Quizzes and Problem Sets

- Class Participation (seatwork and group exercises, homework, recitation, group reports) Computer hands-on exercises using SAS 4
- 4
- 4 Final Examination

Grading System

				Scale: 95-100%	4.0
	FOR EXEMPTED STUDENTS	FOR STUDE FINAL E with		89-94% 83-88% 78-82%	3.5 3.0 2.5
	(w/out Final Exam)	no missed quizzes	one missed quiz	72-77% 66-71% 60-65%	2.0 1.5 1.0
Average of Juizzes	90%	60%	50%	<60%	0.0
)ther equirements	10%	10%	10%		
Final exam	-	30 %	40%		

Learning Plan

LEARNING OUTCOME	ΤΟΡΙϹ	WEEK NO.	LEARNING ACTIVITIES
At the end of the course, the student will apply appropriate statistical concepts, processes, tools,	 Introduction Experimental Designs versus Survey Sampling Some Typical Applications of Experimental Designs Basic Principles Planning an Experiment 	2 hours / Week 1	Prior knowledge and beliefs survey Concept mapping Library work Group discussion and presentations Computer laboratory activities (SAS)
and technologies in the solution to various conceptual and real-world problems	 2. 2. Simple Comparative Experiments 2.1 Review of Estimation and Statistical Hypothesis Testing in Normal Populations a. Confidence Intervals b. Sample Size Computation c. Hypothesis Testing 2.2 Paired Comparison Designs 2.3 Inferences About the Variances of Normal Distributions 	4 hours / Week 1 – 2	Skills exercises Student self-assessment and reflection
	 3. Experiments with a Single Factor 3.1 Completely Randomized Designs (CRD) 3.2 One-Way Analysis of Variance (ANOVA) 3.3 Analysis of Fixed-Effects Models 3.4 Diagnostic Checking and Model 	8 hours / Week 2 – 4	

Adequacy Checking		
3.5 Choice of Sample Size		
Quiz No. 1 & Problem Set 1	2 hours /	
	Week 4	
4. Randomized Blocks, Latin Squares	8 hours /	
and Related Designs	Week 5 - 6	
4.1 Randomized Complete Block		
Design (RCBD)		
a. Analysis		
b. Model Adequacy Checking		
c. Parameter Estimation and the		
Significance Test		
4.2 Latin Square Design (LSD)		
4.3 Graeco and Hyper-Graeco Latin		
Square Design		
4.4 Balanced Incomplete Block Designs		
a. Analysis		
b. Least Squares Estimation		
c. Recovery of the Interblock		
Information		
Quiz No. 2 & Problem Set 2	2 hours /	
	Week 7	
5. Factorial Experiments	10 hours /	
5.1 Basic Definitions and Principles	Week 7 - 9	
5.2 The Two-Factor Factorial Designs		
5.3 The General Factorial Design		
5.4 The 2k Factorial Design		
5.5 Blocking and Confounding in the 2k		
Factorial Design		
5.6 Two-Level Fractional Factorial		
Designs		
Quiz No. 3 & Problem Set 3	2 hours /	
	Week 10	
6. Analysis of Covariance (ANACOVA)	6 hours /	
7. Repeated Measures	Week	
	10 - 11	
Group Reports/Projects	8 hours /	
	Week	
	12 - 13	
Final Examination	12 - 13 2.0 hours /	

References

Montgomery, Douglas C. Design and Analysis of Experiments, 7th edition. New York: Wiley, 2009. Neter, Kutner, Natchsheim and Wasserman. Applied Linear Statistical Models

(4th edition).Chicago: Irwin, 1996.

Box, Hunter and Hunter. Statistics for Experimenters NY: Wiley, 1978.

Cochran, William G. and Cox, Gertrude M. Experimental Designs, 2nd edition. New York: Wiley Classics, 1992.

Hair Jr., Joseph F. et. al. Multivariate Data Analysis, 7th edition. New Jersey: Prentice Hall, 2010.Milliken, George A. and Johnson, Dallas E. Analysis of Messy Data. New York: Van Nostrand Reinhold, 1984.

Johnson, Richard A. and Wichern, Dean W. Applied Multivariate Statistical Analysis, 6th edition. NJ: Pearson Prentice Hall, 2007.

Online Resources

Concepts of Experimental Design: Design Institute for Six Sigma: <u>http://support.sas.com/resources/papers/sixsigma1.pdf</u>

Basic Experimental Design: <u>http://liutaiomottola.com/myth/expdesig.html</u>

DoE & Analysis of Experimental Data (using R): <u>http://cran.r-project.org/web/views/ExperimentalDesign.html</u> What is Experimental Design?: <u>http://www.itl.nist.gov/div898/handbook/pri/section1/pri11.htm</u> A Field Guide to Experimental Designs: <u>http://www.tfrec.wsu.edu/anova/index.html</u>

Class Policies

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 - A. approved absences (where the student concerned officially represented the University at some function or activity).
 - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.
- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- 11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

DR. ARTURO Y. PACIFICADOR, JR.

Chair, Department of Mathematics