

ABSTAL1– Abstract Algebra 1 Prerequisite: INTOSET

Prerequisite to:MODEGEO

Instructor:_____ Consultation Hours: Contact details:_____ Class Schedule and Room:

Course Description

A course in sets and mappings, partitions and equivalence relations, properties of integers, groups and subgroups, normal subgroups and factor groups, fundamental homomorphisms theorems and Cayley's theorem.

Learning Outcomes

On completion of this course, the student is expected to present the following learning outcomes in line with the Expected Lasallian Graduate Attributes (ELGA)

ELGA	Learning Outcome
Critical and Creative Thinker	At the end of the course, the student will be able to
Effective Communicator	apply the appropriate mathematical concepts, well-
Lifelong Learner	known results, thinking processes, tools and
Service-Driven Citizen	technologies in solving various conceptual or real-life
	problems, whenever possible.

Final Course Output

As evidence of attaining the above learning outcomes, the student is required to submit the following during the indicated dates of the term.

Learning Outcome	Required Output	Due Date
At the end of the course, the student will be	A well-thought out solution to a	Week 13
able to apply the appropriate mathematical	problem set which requires the	
concepts, well-known results, thinking	application of the various concepts	
processes, tools and technologies in solving	discussed in the course.	
various conceptual or real-life problems,	• A write-up on a real-life application	
whenever possible.	of group theoretic concepts to	
	solve a specific problem in fields	
	such as Chemistry, Physics,	
	Engineering, Computer Science	
	and the like.	

Rubric for assessn	nent			
A. Problem Set			-	
CRITERIA	Excellent (4)	Good (3)	Satisfactory (2)	Needs Improvement (1)
Understanding 30%	The solution shows a deep understanding of the problem including the ability to identify the appropriate mathematical concepts and information necessary for its solution.	The solution shows that student has a broad understanding of the problem and the major concepts necessary for its solution.	The solution is not complete indicating that parts of the problem are not understood.	There is no solution, or the solution has no relationship to the task.
Strategies and Procedures 20%	Uses a very efficient strategy leading directly to a solution. Applies procedures accurately to correctly solve the problem and verifies the result.	Uses strategy that leads to a solution of the problem. All parts are correct and a correct answer is achieved.	Uses a strategy that is partially useful, leading some way toward a solution but not to a full solution of the problem. Some parts may be correct but a	No evidence of a strategy or procedure uses strategy that does not help solve the problem.

		correct answer is		
			not achieved.	
Organization	There is a clear,	There is a clear	There is some use	There is no
and	effective explanation,	explanation and	of appropriate	explanation or
Presentation	detailing how the	appropriate use of	mathematical	the solution
25%	problem is solved.	accurate	representation but	cannot be
	There is a precise	mathematical	explanation is	understood or it
	and appropriate use	representation.	incomplete and not	is unrelated to
	of mathematical		clearly presented.	the problem.
	terminology and			
	notation.			
Appropriateness	Computations and	A few errors in	Some errors in the	Incorrect use of
of Concepts and	solutions are correct	the use of	use of concepts	concepts and
Results Used in	and concepts and	concepts and	and results as well	results and
the Solution	results were correctly	results and in the	as in the	majors errors in
25%	applied.	computations	computations were	computations
		were noted.	noted.	
B. Application of Group Theory to Real-World Problems				

CRITERIA	EXCELLENT	VERY GOOD	SATISFACTORY	NEEDS
				IMPROVEMENT
Content and	In-depth and	Sufficient	Details are given	Most of the
Accuracy	insightful discussion	supporting details.	but inadequate to	details
(55%)	was used throughout	Mathematical	support the topic.	irrelevant. Errors
	the report.	terms, concepts	Mathematical	in the use of
	Supporting details	and results	terms, concepts	mathematical
	were provided	presented are	and results	terms, concepts
	whenever necessary	correct in most	presented are	and results were
	and appropriate.	parts of the report.	correct in the	noted in a major
	Mathematical terms,		majority of the	portion of the
	concepts and results		report	report.
	presented are			
	correct throughout			
Organization	Logical sequencing	Logical	Logical sequencing	Improper
and	of information	sequencing of	of information in	sequencing of
Presentation	throughout. Excellent	information most of	some parts of the	information in a
(35%)	choice of examples	the time.	output. Some of the	substantial part
	and illustrations to	Appropriate use of	examples and	of the report.
	enhance and clarify	examples and	illustrations used	Majority of the
	the discussion. Clear	illustrations. Clear	are appropriate.	illustrations and
	and effective	and effective	Clear concluding	examples used
	concluding	concluding	paragraph but lacks	are
	paragraph. No	paragraph with	effectiveness.	inappropriate.
	grammatical	very minor errors	Between four and	Concluding
	error noted	Between one and	seven errors were	paragraph not
		three errors were	noted	clear. More than
		noted		seven errors
				were noted
Bibliography	All resources cited	Most of the	Some of the	Majority of the
(15%)	and up-to-date	resources were	resources were not	resources not
		cited and up-to-	cited and others are	cited
		date	out-of-date	and some are
				out-of-date

- Seatworks
- Quizzes (at least three)
- Boardwork
- Recitation

Grading System					
				Scale:	
	FOR EXEMPTED	FOR STUDI FINAL	ENTS with EXAM	95-100% 89-94%	4.0 3.5
	STUDENTS (w/out Final Exam)	with no missed quizzes	with one missed quiz	83-88% 78-82% 72-77% 66-71%	3.0 2.5 2.0 1.5
Average of quizzes	95%	65%	50%	<60%	0.0
Other requirements	5%	5%	10%		
Final exam		30 %	40%		

Learning Plan

	TOPIC	WEEK	
		NO.	
At the end of the		vveeks	Preparatory exercises
course, the student will	1 The Integers Divisibility	1-5	Review of concepts from
be able to apply the	1. The integers, Divisibility,		
appropriate			
matnematical	2. Relations and Mappings		
concepts, well-known	3. Equivalence Relations, Partitions and		Skills Exercises
results, thinking			
processes, tools and	4. The Integers Modulo n		
technologies in solving	II. GROUP THEORY	Weeks	Library Work
various conceptual or	A. Binary Operations	4-7	Class Discussions
real-life problems,	B. Groups		Skills Exercises
whenever possible.	1. Definitions and		Group Work
	Examples		
	2. Group Tables		
	3. Order of a Group/of an		
	Element		
	C. Subgroups	Weeks	Library Work
	1. Definition and examples	8-11	Class Discussions
	2. One-Step and Two-Step tests		Skills Exercises
	3.Center of a Group		Group Work
	4. Centralizer of an Element		
	D. Abelian and Cyclic Groups		
	1. Definition and Examples		
	2. Generators		
	3. Subgroups of Cyclic Groups		
	4. Lattice Diagrams		
	E. Non-Abelian Groups	Weeks	Library Work
	1. Dihedral Groups	12-13	Class Discussions
	2. Permutation Groups, Symmetric		Skills Exercises
	Groups		Group Work
	3. Orbits, Cycles, Transpositions		
	4. Even and Odd Permutations,		
	Alternating Group		
	F. Cosets and Normal		
	Subgroups		
	1. Cosets and the Theorem of		
	Largrange		
	2. Normal Subgroups		

3. Factor Groups		
G. Group Homomorphisms		
1. Definition and Examples		
2. Kinds of Homomorphisms		
3. Fundamental Theorem of		
Homomorphisms		
4. Other Isomorphism Theorems		
FINAL EXAMINATION	2	
	hours	

References

- Fraleigh, J.B. (2002) A First Course in Abstract Algebra (7th edition), Addison-Wesley Publishing Co.
- Gallian, J. (2010), Contemporary Abstract Algebra (7th edition), Brooks/Cole CENGAGE Learning
- Herstein, I.N. (1986) Abstract Algebra (3rd edition), Prentice-Hall, Inc.

Online Resources

- Wah, A. and H. Picciotto, Algebra: Themes, Tools and Concepts. Accessed October 22, 2012 from www.mathedpage.org/abs-alg/abs-alg.pdf
- Abstract Algebra Online: Lessons, Tutorials and Lecture Notes. Accessed October 22, 2012 from archives.math.utk.edu/tutorials.html

Class Policies

- 1. The required minimum number of quizzes for a 3-unit course is 3, and 4 for 4-unit course. No part of the final exam may be considered as one quiz.
- 2. Cancellation of the lowest quiz is not allowed even if the number of quizzes exceeds the required minimum number of quizzes.
- 3. As a general policy, no special or make-up tests for missed exams other than the final examination will be given. However, a faculty member may give special exams for
 - A. approved absences (where the student concerned officially represented the University at some function or activity).
 - B. absences due to serious illness which require hospitalization, death in the family and other reasons which the faculty member deems meritorious.
- 4. If a student missed two (2) examinations, then he/she will be required to take a make up for the second missed examination.
- 5. If the student has no valid reason for missing an exam (for example, the student was not prepared to take the exam) then the student receives 0% for the missed quiz.
- 6. Students who get at least 89% in every quiz are exempted from taking the final examination. Their final grade will be based on the average of their quizzes and other prefinal course requirements. The final grade of exempted students who opt to take the final examination will be based on the prescribed computation of final grades inclusive of a final examination. Students who missed and/or took any special/make-up quiz will not be eligible for exemption.
- 7. Learning outputs are required and not optional to pass the course.
- 8. Mobile phones and other forms of communication devices should be on silent mode or turned off during class.
- 9. Students are expected to be attentive and exhibit the behavior of a mature and responsible individual during class. They are also expected to come to class on time and prepared.
- 10. Sleeping, bringing in food and drinks, and wearing a cap and sunglasses in class are not allowed.
- 11. Students who wish to go to the washroom must politely ask permission and, if given such, they should be back in class within 5 minutes. Only one student at a time may be allowed to leave the classroom for this purpose.
- 12. Students who are absent from the class for more than 5 meetings will get a final grade of 0.0 in the course.
- 13. Only students who are officially enrolled in the course are allowed to attend the class meetings.

Approved by:

DR. ARTURO Y. PACIFICADOR, JR.

Chair, Department of Mathematics